THE GOES WILDFIRE AUTOMATED BIOMASS BURNING ALGORITHM AND ITS APPLICATIONS

Christopher C. Schmidt*
Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin, Madison, WI

Elaine M. Prins
CIMSS, University of Wisconsin, Madison, WI

INTRODUCTION
Since August 2000 the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) has provided half-hourly fire detection over the Western Hemisphere using the Geostationary Operational Environmental Satellite (GOES) I-M series of satellites. In 2002 the National Oceanic and Atmospheric Administration (NOAA) included the WF_ABBA within its Hazard Mapping System (HMS) as an operational product. The fire information derived by the WF_ABBA has been used by air quality managers to qualitatively monitor sources of smoke and is increasingly used by modelers to provide quantified inputs for emission models such as the Naval Research Laboratory (NRL) Aerosol Analysis and Prediction System (NAAPS). Researchers in South America have used the GOES fire products for years for monitoring biomass burning there. The WF_ABBA system is being extended to process all GOES data with a very low latency as well as to processing data from other geostationary satellites as part of a global fire detection network. Research is beginning on applying the fire data to air quality problems such as PM2.5 forecasting for the United States.

The hazards, international environmental monitoring, and scientific research communities have varying requirements with regards to satellite fire detection, but do share common ground in that they all desire as few false alarms as possible, accurate fire classification and duration estimates, and accurate geolocation. Additionally, the hazards community has set goals regarding wildland remote sensing fire detection and response. In regions where a rapid initial attack is crucial, remote sensing fire reports must be accessible within 5 minutes with a subsequent confirmation in 5 minutes and a revisit time of 15 minutes thereafter. Current generation GOES and Met-8 are capable of meeting the temporal sampling requirement of 15 minutes but initial detection and confirmation requirements can only be met with a sampling resolution greater than 5 minutes. Despite this, the hazards community indicates that the use of current geostationary and polar orbiting fire detection platforms remains important (Dull and Lee, 2001).

Emissions modeling efforts bring additional requirements to the table. The power output of a fire, the basic quantity that can be measured by a satellite, is important in estimating emissions rate. However, knowledge of what, how much, and at what temperature biomass is burning are also critical pieces of information for parameterizing the aerosols and particulate matter output of a fire. Navigation of satellite pixels and accurate knowledge of the biomass within the pixel (which can exceed 40 square kilometers at large viewing angles) take on additional importance. Additionally, it is critical to know what fires can and cannot be detected by a satellite, so that biases in comparisons between satellite and ground observations can be accounted for to some degree.

In August of 2000 the GOES WF_ABBA began detecting and classifying fires using GOES-8/-10 data on a half-hourly basis for the Western Hemisphere. Since then GOES-11/-12 data have also been processed, and plans are to add processing for GOES-9, Met-8, and other geostationary platforms to provide coverage over the Western Pacific, Europe, Asia, and Africa. The WF_ABBA data set allows an illustration of the utility of timely geostationary fire products for applications from climate monitoring to hazards. In several cases the GOES WF_ABBA has detected fires before they were reported, even in the United States where the population density and efforts of the Forest Service usually allows for rapid location of active fires. Improvements are being made to the WF_ABBA processing system to reduce processing time and latency to their respective minima.

OVERVIEW OF THE WF_ABBA ALGORITHM AND OUTPUT PRODUCTS
The WF_ABBA is a modified version of the Automated Biomass Burning Algorithm (ABBA) which monitored fire activity in South America from 1995 to 2002. The WF_ABBA was developed as a collaborative effort between the National Oceanic and Atmospheric Administration (NOAA)/National Environmental satellite, Data, and Information Service (NESDIS)/Office of Research and Applications (ORA) and UW-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) personnel. The WF_ABBA is a dynamic multispectral thresholding contextual algorithm that uses the visible (when available), 3.9 µm, and 10.7 µm infrared bands.
The algorithm is based on the sensitivity of the 3.9 μm band to high temperature subpixel anomalies and the relative insensitivity of the 10.7 μm band to the same. The current WF_ABBA technique is derived from that of Matson and Dozier (1981) who applied a similar concept to NOAA’s Advanced Very High Resolution Radiometer (AVHRR).

The WF_ABBA classifies fires into six categories. Processed fires have the highest confidence level and have associated instantaneous sub-pixel fire size and temperature estimates. Saturated pixels indicate that the 3.9 μm sensor detected the maximum possible temperature that it was capable of. Saturated fire pixels indicate extremely intense fires but at times they can be false alarms due to solar reflection and surface heating. The core WF_ABBA includes a number of checks to minimize these occurrences by taking into consideration satellite view angle, diurnal solar contributions, and surface characteristics. Cloudy fires do not have size and temperature estimates due to intervening cloud. High, medium, and low possibility fires are considered relatively likely as their labels indicate. Low possibility fires are the most likely to be false alarms, though they also may indicate the early phases of a fire or a fire of limited extent.

A temporal filter within the WF_ABBA provides further screening of false alarms due to reflection off of clouds and extreme solar zenith angles at sunrise and sunset, as well as satellite noise. The temporal filter utilizes WF_ABBA output from the previous twelve hours and rejects fires that do not appear at least twice within that time period. Fires are collocated within 0.1° for the purposes of the temporal sampling. Both filtered and unfiltered WF_ABBA fire products are made available to the user community as temporal filtering will eliminate short-lived agricultural fires and also delay the identification of a fire start time.
WF_ABBA output comes in various forms. Text files containing basic information on each fire are available and have been integrated into Geographical Information Systems (GIS) as layers and aerosol transport models as emission sources (Freitas et al., 2003; Reid et al., 2001; Reid et al. 2003). Imagery is also generated by CIMSS for the web (Schmidt, 2002). Fig. 1 contains an example of the imagery that was produced using GOES-11 Rapid Scan Operation (RSO) data acquired during the GOES-11 checkout.

More information on the algorithm and the determination of sub-pixel fire characteristics can be found in Prins and Menzel (1992 and 1994), Prins et al. (1998; 2001a; b; 2003), and Schmidt and Prins (2002).

TEMPORAL RESOLUTION AND TIMELINESS

The greatest advantage of geostationary fire detection over polar orbiter-based fire detection is the temporal sampling frequency. Instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) have a higher resolution than GOES (1 km for MODIS versus 4 km for GOES), but only achieve one overpass per day per instrument at mid-latitudes. Short-lived fires or fires that start after the MODIS overpass are completely missed and do not appear within its data set. Under the normal imaging schedule, GOES scans North and Central America once every 15 minutes, and the full disk once every three hours.

The GOES-11 Rapid Scan Operation (RSO) imagery shown in Fig. 1 illustrates the need for processing higher temporal GOES data when available. The current 30 minute resolution of the GOES WF_ABBA operational fire product is too coarse to resolve the best possible estimates of the start times of some fires. Fire detection must be at a high temporal resolution to provide emergency management services with as much lead-time on new fires as possible. Processing all available GOES data is a step towards that goal.

The latency between the receipt of satellite data and the availability of the fire products is a problem for all current platforms. Recent work has made it possible for the WF_ABBA to produce fire data in ASCII file form within less than five minutes of the start of processing. Generating web imagery takes an additional five minutes or more. Latency is extremely important because fire detection is a real-time process and minutes count. Fig. 1 illustrates the Rodeo-Chediski fire complex in its early stages. The WF_ABBA detected a fire at 23:07 UTC on 19 June 2002, while the fire was first reported by the suspected arsonist at 23:11 UTC. Had that person not reported it, at least several more minutes might have passed before it was seen by local observers. The fire complex burned over 480,000 acres, cost $43 million to fight, and resulted in $28 million in damages and over $100 million in insurance claims. Given the rapid intensification of the Rodeo fire, minutes counted. GOES RSO WF_ABBA imagery with a low latency could provide crucial extra minutes of lead time for fire fighting teams in similar situations.

Feltz et al. (2003) document cases in Quebec in 2002 where the GOES WF_ABBA detected several fires in the boreal forests before their recorded detection times. Fig. 2 illustrates fires that the WF_ABBA detected before their start times as recorded by Canada’s Société de protection des forêts contre le feu (SOPFEU). There is no fire protection for the northern region of Quebec, and as such SOPFEU does not perform systematic daily detection over that region. This study also found that for processed fires 95% were validated by direct observations. When all categories were considered the validation rate dropped to 78%, though approximately three quarters of the false alarms were low possibility fires. For temporally filtered fires the validation rate for processed fires reached 97% and dropped to 96% when all categories were considered. The WF_ABBA fills in the gaps in the fire record that would otherwise be available and assists in the prediction of smoke events over the United States through aerosol models, such as the Navy Aerosol Analysis and Prediction System (NAAPS), which is a component of the Fire Locating and Modeling of Burning Emissions (FLAMBE, http://www.nrlmry.navy.mil/flambe/) system (Reid, 2001).
Emissions modeling at smaller scales than the NAAPS (which is a global model) utilizing WF_ABBA fires as source functions is in the early stages of development. Currently work is proceeding on multiple fronts with multiple funded and proposed projects involving CIMSS and a project at the EPA to integrate NOAA's HMS fires into the Community Multi-scale Air Quality (CMAQ) model. CIMSS work in emissions estimates is currently focused on estimating PM2.5 emissions for North America. CIMSS is also looking to be involved in projects that characterize the similarities and differences between the fires detected by various satellite platforms in an effort to create a consistent, overall inventory of fires for emissions modeling and tracking of biomass burning in general.

CONCLUSION
In recent years the WF_ABBA has moved to become an operational tool used by the hazards, environmental monitoring, and scientific communities. Timeliness and latency are being reduced to their absolute minima and geographic coverage is being increased by the inclusion of GOES-9, Met-8, MTSAT-1R, and other capable platforms. Progress is being made in applying fire data to issues brought forth by the hazards management and the emissions modeling communities. Full addressing their needs requires new satellite platforms with faster scan times and higher resolutions than currently available. However, efforts with current platforms provide solid data to back up future requirements for satellite systems.

REFERENCES

Christopher Schmidt is an Associate Researcher at CIMSS who splits his time between biomass burning, ozone detection with the GOES Sounder, and a major software rewrite for GOES Sounder applications.