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1. Project Objectives

Soil moisture is one of the key variables in controlling the exchange of water and heat energy between

land surface and atmosphere. However, widespread and/or continuous measurement of soil moisture is all

but nonexistent. Direct observations of soil moisture are currently restricted to discrete measurements at

specific locations, and such point-based measurements do not reveal large-scale soil meisture and are

therefore inadequate to carry out regional and global studies. Satellite remote sensing offers a means of
measuring soil moisture across a wide area continuously over time (Engman 1990), while techniques in

the microwave and optical/IR frequency regimes have attracted more attention (Chauhan 2003).

Microwave remote sensing technology has demonstrated a quantitative ability to retrieve soil moisture

physically for most ranges of vegetation cover (Njoku et al. 2002). However, current microwave
technology limits the spatial resolution of soil moisture measurements. Optical/IR techniques can provide

fine spatial resolution for soil moisture estimation (Idso et al. 1975, Price 1977), but it is difficult to

decouple signals from vegetation and soil. In addition, satellite remote sensing can only provide soil

moisture measurements for the top few centimeters of the soil profile (Engman et al. 1995), while the

complete soil moisture profile in the unsaturated zone is more useful for hydrologic, climatic and

agricultural studies (Jackson 1980, Mancini et al. 1995, and Newton et al. 1983).

Therefore, to establish robust algorithms for soil moisture estimation, further efforts are still needed to
study the physical principles so as to identify the quantitative relationships between soil moisture content
and remote sensing variables, and the feasibility and capability of soil moisture retrieval from space need
to be assessed in more details.

The objectives of this proposed research are:

(1) To estimate soil moisture by combining the strengths of multi-sensor and ground measurements to
achieve higher accuracy and spatial resolution.

(2) To investigate the potentials of using.a combination of multiple solar spectral signatures to minimize
the vegetation effects for soil moisture estimation. :

(3) To retrieve soil moisture profile in the unsaturated zone by solving the Richards equation, which
governs the vertical water infiltration in layered soil profiles.

(4) To generate daily soil moisture and drought index products and test/validate those products using
NOAA/NWS measurements or model simulations.

2. Project Accomplishments and Findings

2.1 Study Area and Period

We conducted soil moisture study over the Montana state for the period of year 2007-2010. The total land
area of Montana is about 93.1 million acres, and approximately 66% of the total land areas are dedicated
to farmland or agriculture. Soil observations and analysis in Montana are very helpful for farmers and
government agencies in agricultural planning, drought relief, irrigation management, and water resource
management,



2.2 Data Collection and Processing
Ground Observation

We used in-situ measurements from the Soil Climate Analysis network (SCAN).
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The SCAN sites provide observations of soil moisture (at 27, 47, 87, 207, and 40), soil temperature, air
temperature, and precipitation etc. Figure 1 shows the SCAN sites in Montana. We collected daily soil
moisture and precipitation data from year 2006 to 2010 at the 8 SCAN sites.

Satellite Remote Sensing Measurements

MODIS instrument onboard NASA EOS satellites Terra and Aqua has high potential for better estimation
of land surface parameters. To investigate the feasibility of soil moisture retrieval with MODIS
measurements, we adapied the triangle method to MODIS measurements, and validated with ground
measurements at SCAN sites in Montana. We collected Terra MODIS daily surface reflectance and
surface temperature products from year 2007 to 2010 in this study. Large volume of remote sensing

datasets, over 1200 MODIS surface reflectance data files and over 1200 MODIS surface temperature data
files are collected, with a total size around 108 gigabytes.

Based on geolocation, MODIS daily surface reflectance and surface temperature data at the 8 SCAN sites
are extracted from the MODIS data products, and merged with the daily ground measurements. Finally, a

4



table of integrated daily datasets is generated, including year, month, day, soil moisture at 27, 47, 87,

2037,

and 407, precipitation amount, surface reflectance at MODIS bands 1-7, and surface temperature. Since
MODIS visible and infrared bands only can sense the Earth’s surface during clear days, data records with
precipitation>0, or invalid LST, or invalid surface reflectance are filtered out. The following steps are
based on valid data only. And, NDVI and other spectral indices are calculated based on surface

reflectance data.

2.3 Technical Methods

Universal Triangle Method

Vegetation and land surface temperature have a complicated dependence on soil moisture. Ihe unique
relationship among soil moisture M, land surface temperature (LST) and the Normalized Difference
Vegetation Index (NDVI) for a given region, referred as the ‘Umiversal Triangle” (Carlson et al. 1994,

Gillies et al. 1997) can be expressed through a regression formula such as:

where 777 - I-1 L NDVIT = NDVI - NDVI, , T and NDVI are observed LST and NDVI, respectively. For

T.-T, NDVI, - NDVI,

5 ]
n=2, the polynomial model can be written as:

M = ago+ aso NDVI* + azg NDVI*2 + agr T* + agp T2+ a1 NDVI* T + apa NDVI*2 T2+ a1 NDVI* T*2 + ap NDVI2 T,

Our early study has demonstrated that soil moisture can be estimated at MODIS Ikm resolution based
on the above polynomial equation (Wang et al. 2007). The flowchart of the soil moisture estimation is

given in figure 2.

Soil Moisture from Ground
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Fig. 2 Schematic flow diagram for estimating soil moisture.

First, the regression relationships are identified by combining the ground measurements of soil moisture
and MODIS NDVI and LST. By applying these regression relations to MODIS measurements, daily soil
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moisture data at MODIS resottion can be obtained. In situ soil muisture is compared against the
predictions.

Spectral indices using multiple MODIS RSB measurements

Based on the soil and vegetation spectral signatures, the Normalized Multi-band Drought Index (NMDI) is
proposed by using three wavelengths, one in the NIR centered approximately at 860 nm, and two in the
SWIR centered at 1640 nm and 2130 nm, respectively. The usefulness of NMDI has been validated by
using the bare soil spectra under various soil water contents as well as satellite data. Results show that
strong differences between two water absorption bands in response to soil and leaf water content give this
combination capability to estimate water content for both soil and vegetations (Wang and Qu 2007).
NMDI has demonstrated the potential to monitor dry soil status for the bare soil, while for heavily
vegetated areas, NMDI turns to a complete vegetation water index like NDWI, rather than a soil moisture
index.

In this study, MODIS spectral indices were compared with the SCAN soil moisture observations.

2.4 Results and Analysis

Universal Triangle Method

The universal triangle methods were applied to 8 SCAN sites in Montana to check the performance of the
approach with 2™ order polynomial model. Data of year 2007, 2008 and 2009 were used to calibrate the
soil motsture model, while the data of year 2010 were used for validation.

Since visible and infrared channels only can sense a very thin layer of the surface, we investigated the 2
order model with MODIS data and 2” soil moisture data. Figures 3-10 demonstrates the results of
modeling and validation of soil moisture at 2” depth. Although the results are not perfect, they are typical
in soil moisture retrieval with remote sensing technology. The determinant coefficients '(RQ) are from 0.29
to 0.48, with RMSE at reasonable range for most sites. Why the determinant coefficients (R?) are not very
high? There are several reasons:

(1) The SCAN system uses automatic sensor to detect soil moisture. The accuracy of SCAN soil
moisture data depends on sensor calibration. In our previous studies, we noticed that manually
measurements of soil moisture usually could get very good results (Wang et al. 2007), while for
automatic instruments, the extra error source from instrument calibration could affect the
performance of the model.

(2) Uncertainties in atmospheric correction and surface temperature retrieval of MODIS data products
may also introduce errors and effect model performance.

For regional applications of soil moisture estimation with MODIS measurements, more details about land
cover type, fractional vegetation cover, and soil type are necessary. Different soil types and different
vegetation types have different response to water content change. And, in case of dense vegetation cover,
satellite instrument may not be able to sense signals from soil effectively.
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Spectral indices using multipie MODIS RSB measurements

The spectral indices based on MODIS RSB measurements, including NDWI, NDII, NDMI, and NDVI,
are very sensitive to vegetation. For pixels with vegetation cover, it is still a challenging problem to.
effectively separately signals from vegetation and soil. Although some indices, for example, NDMI, are
sensitive to soil moisture, we couldn’t find robust model to estimate soil moisture quantitatively with these
indices. But, find some interesting patterns related to soil moisture. :

Site 581
1 T ! T T

08} ¥

o6 : ' 1

0.4f

NDII
-—
N

o2 L S 2

. Site 581
0.6 - f

0.5

0.4}

0.3}

0.2} i

NDWI

0.1r

" Figure 11: MOIMS spectral indices and soil moisture (site 581)

Figure 11 illustrates the “V” shape relationship between NDVI and NDII, as well as NDVI and NDWI.
Color of the points represents soil moisture (see color bar). From the figure 1, when NDVI is very low,
soil moisture is usually low, and NDVI has a negative relationship with NDII or NDWI. When NDVI
reaches certain value (around 0.2), there is a turning point, the relationship will be changed from negative

15



to positive, but can’t identify soil moisture in the NDVI-NDII space or NDVI-NDWI space. Results are
similar for other SCAN sites, as shown in figure 12 for site 2019.

Based on our analysis, the “V” shape relationship and the turning point should be related to the fraction of
vegetation cover. Identification of the turning point and “V> relationship should be helpful for further
study towards quantitative estimation of soil moisture with MODIS SRB measurements.
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3. Benefits and Lessons Learned: Operational Partner Perspective

Operational soil moisture estimation with visible/infrared measurements from space is very important, but
still quite challenging. Weather condition (cloud cover) may limit the availability of valid data, while lack
of detailed information of fractional vegetation cover, and vegetation/soil response to water content
change, may limit the accuracy of the universal triangle methods. Based on current study, it is feasible to
get soil moisture at a reasonable accuracy at regional scale. Further improvements require investigation of
vegetation and soil properties. For vegetation, there are very good models to link leaf and canopy
properties with reflectance, but it is very complicated to link soil properties with surface reflectance
because of the diversity of soil types. For operational use, it is necessary to conduct ground measurements
of soil properties to create a database of soil reflectivity for various soil types with diverse moisture
content.

4. Benefits and Lessons Learned: University Perspective

This project provides a good opportunity for researchers in university to investigate the feasibility to
transfer research achievements for operational applications. While research achievements provide new
insights for soil moisture study, it is challenging to transfer the results to operations at regional scale
effectively. Learning the requirements of operations is very helpful for further improvements of research
works.

5. Publications and Presentations

Wang, Lingli, 2008, Remote Sensing Techniques for Soil Moisture and Agricultural Drought Monitoring.
George Mason University. Advisor: John J. Qu.

Lingli Wang, John J. Qu, and Xianjun Hao (2012). Advances in Remote Sensing of Soil and Vegetation
Moisture from Space. Book chapter for "Multi-Scale Hydrologic Remote Sensing. Prospects and
Applications” , edited by Ni-bin Chang, and Yang Hong. Taylor & Francis Group /CRC Press. Pages 507-
536.

Lingli Wang and John Qu (2009). Multiband Drought Index Enhances Soil and Vegetation Moisture
Monitoring, SPIE Newsroom, DOI: 10.1117/2.1200904.1623.

6. Summary of University/Operational Partner Interactions and Roles

The interaction between university and operation partner is critical in investigating research algorithms for
operational use. Through interactions, both sides can understand the capabilities and limitations of
research works more clearly.
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