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Abstract—Wildfire risk assessment has traditionally been 

carried out using models based on meteorological parameters 
measured at spatially sparse weather stations. Remote sensing 
techniques can offer a cost effective way of esimating the 
required parameters such as fuel moisture and fuel temperature 
in near-real time. Moreover remote sensing can provide wide 
area coverage and thus circumvent errors introduced due to 
spatial interpolations of weather station data. In this paper we 
present a new remote sensing based Fire Susceptibility Index 
(FSI) based on the susceptibility of the underlying live fuel to 
burn. The proposed index is based on the concept of heat energy 
of pre-ignition and thus allows a physical meaning to be 
associated to the index values. Heat energy of pre-ignition is the 
heat energy required to bring a fuel from its current temperature 
to ignition temperature and can be estimated as the heat required 
in evaporating the moisture content plus the heat required to 
raise the temperature of the dry fuel to ignition temperature. The 
computation of the index requires inputs of fuel temperature and 
fuel moisture content, both of which can be estimated using 
remote sensing techniques. While MODIS surface temperature is 
used as a proxy for fuel temperature, fuel moisture is estimated 
by a linear regression technique utilizing the correlation between 
ground observations and the ratio of normalized difference 
vegetation index and surface temperature. Results are shown for 
the Georgia region during the spring and summer months of 
2004. 
 

I. INTRODUCTION – THE ROLE OF REMOTE SENSING 
ILDFIRE risk can be defined as the probability of fire 
initiation and is typically estimated through fire risk 

indices that integrates the effect of relevant fire favoring 
variables. Such estimations of fire risk are useful in orienting 
local policies not only in terms of fire prevention but also in 
the management of prescribed fires, the latter becoming 
increasingly important for controlling fuel buildup and 
revitalizing the landscape (Carlson and Burgan, 2003). Fire 
risk indices can be classified into long term indices and short 
term or dynamic indices (San-Miguel-Ayanz, 2003). Long 
term indices are based on variables such as topography or fuel 
type that change relatively little over a period of time. They 
are usually computed before the fire season and are meant to 
identify areas where intrinsic conditions may be more 
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favorable to wildfires. In contrast short term indices are based 
on more transient variables like fuel moisture content (FMC) 
of live and dead fuels.  The fire risk index proposed in this 
paper, namely the fire susceptibility index is a short term 
index based on live woody FMC and fuel temperature. 
Traditionally such short term fire risk estimations are 
accomplished through meteorological indices that attempt to 
model the fire risk using relevant weather variables such as 
FMC, temperature and humidity measured at spatially sparse 
weather stations. Apart from the uncertainty inherent in these 
meteorological indices, such models suffer from errors due to 
spatial interpolation techniques that may be unsuitable in areas 
of complex terrain (Camia et al 1999).   Examples of 
meteorological fire danger indices are the Energy Release 
Component (ERC), the Spread Component (SC) and the 
Burning Index (BI). These indices are computed by the  
National Fire Danger Rating System (NFDRS) (Bradshaw et 
al, 1984) operated by the USDA Forest service using weather 
variables measured at weather stations located throughout the 
United States. Today, remote sensing offers a cost effective 
way for circumventing the spatial interpolation problem, with 
other obvious advantages of spatial and regular temporal 
coverage. Although remote sensing is until now not an 
alternative to weather stations since it cannot measure critical 
parameters such as dead fuel moisture and wind over land, it 
certainly can support and reinforce the ground based 
observations to a large extent. Remote sensing has the 
potential of measuring vegetation status, stress and moisture 
content; variables that are critical in estimating fire 
susceptibility or fire behavior. Remote sensing techniques 
utilizing optical and thermal infrared sensors have resorted 
primarily to two ways of measuring live FMC (ratio of the 
moisture content weight to the dry weight of the fuel 
expressed as a percentage): (i) estimating vegetation status or 
vegetation stress as a proxy for estimating live FMC and (ii) 
the direct estimation of live FMC. The former indirect 
methods seek to exploit the obvious correlation between 
vegetation greenness (chlorophyll content) and its moisture 
content and primarily use the Normalized Difference 
Vegetation Index (NDVI) (Chuvieco et al 1999, 2002), or its 
variations like relative greenness (RG) (Burgan & HartFord, 
1997; Chuvieco et al 2002). Potential improvements in live 
FMC estimations has been observed by incorporating satellite 
derived Surface Temperature (ST), since ST would be 
expected to increase in drier plants on account of reduced 
evapotranspiration (Chuvieco et al 1999, 2004). Specifically 
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Fig. 1. Sensitivity of FSI to Live Woody FMC and Fuel Temperature 

the ratio NDVI/ST was found to be very useful (Chuvieco et 
al 1999, 2004). Direct methods of vegetation water 
estimations typically utilize water absorption channels in the 
shortwave infrared (SWIR) and contrast it with near infrared 
(NIR) channels to account for the variations in reflectance due 
to leaf internal structure and dry matter content. Several 
indices based on SWIR and near infrared (NIR) reflectances 
have been proposed for this purpose such as NDWI 
Normalized Difference Water Index (Gao 1996); SRWI, the 
Simple ratio water index (Zarco-Tejada & Ustin 2001, Zarco 
Tejada et al 2003); LWCI, the Leaf water content index (Hunt 
et al 1987); GVMI, the Global vegetation water moisture 
index (Ceccato et al 2002). An inherent feature of these 
SWIR-NIR based indices is that they are more related to 
quantity of water per unit area (equivalent water thickness 
(EWT) per unit area) rather than the FMC, the quantity of 
water per unit of dry vegetation weight (Ceccato et al 2002, 
Jackson et al 2004). Various empirical and semi-empirical 
relationships have been used to estimate live FMC with 
reasonable accuracy.  Live FMC itself is good measure of fire 
risk. Several other remote sensing based fire risk indices have 
also been proposed and investigated in contemporary research. 
The Fire Potential Index (FPI) (Burgan 1998) combines 
AVHRR based RG measures with ground measurements of 
dead FMC to assess fire risk at a scale of 0 to 100. Others 
examples in current literature are the FIRA (Fire Risk 
Assessment Algorithm) index which assesses fire risk by 
combining Tasseled Cap derived measures of wetness and 
brightness using LandSat-ETM images (Mbow et al 2004). 

In this paper we propose a new fire risk index, which we 
call the fire susceptibility index or FSI. We compute these 
indices for the spring and summer months of 2004 for the 
Georgia region of south-eastern USA using MODIS Aqua 
observations and subjectively evaluate the results. 

II. FIRE SUSCEPTIBILITY INDEX 
 

Remote sensing based fire risk indices generally have no 
physical meaning and are basically measures of vegetation 
dryness. The proposed fire susceptibility index is a step in that 
direction and is based on a physical measure of heat energy 
required for the fuel to ignite. Heat energy of pre-ignition (Qig, 
J/kg) as it is called, can be defined as the heat energy required 
to bring a fuel from its current temperature to ignition 
temperature and can be estimated as the heat required to raise 
the temperature of moisture contained to the boiling point 
(373K under standard atmospheric pressure) plus the latent 
heat required in evaporating the moisture content plus the heat 
required to raise the temperature of the dry fuel to ignition 
temperature (Bradshaw et al 1984). Heat energy of pre-
ignition is an important parameter of Rothermel’s fire spread 
rate model (Rothermel, 1972) and can be expressed as  
         Qig = Cpd (Tig – Tf) +  [Cpw (373-Tf) + V]  KJ/kg        (1) 
where Cpd and Cpw are the specific heat of dry wood 
(≈1.7KJkg-1K-1) and water (≈ 4.187KJkg-1K-1) respectively, 

while Tig and Tf are the ignition temperature of wood 
(assumed to be ≈ 600K  after Rothermel, 1972) and the fuel 
temperature respectively. Mf is the fractional moisture content 
(=FMC/100) and V is the latent heat of vaporization of water 
(≈2258KJkg-1). If we substitute the values of the various 
constants, we are left with two variables FMC and fuel 
temperature both of which can be potentially measured by 
remote sensing. We believe Qig can serve as a measure of fire 
risk. With the objective of defining a unitless index we fix a 
FMC, fuel temperature pair that can describe an average fire 
risk condition. We arbitrarily set the average fire risk FMC at 
120% and fuel temperature at 300K. Substituting these 
average risk FMC and fuel temperature value in (1) we get an 
average risk pre-ignition energy, Qigavg. The fire susceptibility 
index (FSI) is then defined as  
                     FSI=(Qigavg – Qig) / Qigavg

  * 100                      (2) 
FSI thus turns out to be an open ended index that measures the 
percentage less energy required for ignition than in the 
average case. For example a pixel FSI value of 80 would 
imply that woody material in that pixel would require 80% 
less heat energy than a pixel with woody material that has a 
FMC of 120% and a fuel temperature of 300K. Positive values 
would indicate a fire risk higher than the defined average risk 
while negative values would indicate otherwise. In fig 1 we 
show the sensitivity of FSI to FMC with the fuel temperature 
fixed at 300K. It shows that at 300K FSI can drop from 40 to -
40 for an increase of FMC from 60% to 180%. Fig 1 also 
shows the variation of FSI with fuel temperature with FMC 
fixed at 120%. At this FMC an increase of fuel temperature 
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Fig. 2.  Study Region in Georgia, USA showing the BGC biome surface types 
(1-Evergreen Needleleaf Vegetation; 2- Evergreen Broadleaf Vegetation; 3- 
Deciduous Needleleaf vegetation; 4- Deciduous Broadleaf  vegetation; 5- 
Annual Broadleaf vegetation; 6-Annual Grass Vegetation; 7-Non-vegetated 
land; 8-Urban) 

from 270K to 330K results in an increase of FSI from about -6 
to about 6. Thus the contribution of FMC to FSI is relatively 
higher than fuel temperature. 
FSI can be localized to a vegetation type by setting the 

average risk FMC and fuel temperature to appropriate values. 
This baseline FMC can also be set as the live FMC of 
extinction for the vegetation type. Live fuels can act as a heat 
sink or a heat source depending on whether its moisture 
content is above or below this extinction moisture content. If 
the moisture content remains above this critical value, live 
fuels do not burn and act as a heat sink (Bradshaw et al 1984). 
This implies that if we use this extinction moisture content as 
the baseline FMC for computing FSI, locations with negative 
values of FSI would have negligible fire risk. Further the 
physical theory underlying the concept of FSI lends itself to 
computations of probability of ignition. The 1978 NFDRS 
technical documentation (Bradshaw et al 1984) defines the 
probability of ignition P(I) by a firebrand as the probability 
that the firebrand will start a fire after landing on receptive 
fuels. This probability of ignition of a fuel with a certain Qig 
was proposed to be a product of the probability that a 
firebrand of specific size will cause an ignition of the fuel and 
the probability that the firebrand will be of that size. Moreover 
previous investigations of ignition probability caused by 
lightning (Fuquay et al 1979, Latham & Schlieter 1989) also 
used an energy argument in which the available energy 
density in the lightning continuing current was compared to 
the fuel’s heat of pre-ignition. In this perspective FSI could be 
potentially prove to be useful in computing these probabilities 
of ignition either by fire-bands or by lightning.  Obviously the 
feasibility of this claim needs to be further investigated. 

A particular limitation of FSI is that it does not take 
moisture content of dead fuel into consideration. Dead fuel 
moisture content is an important factor in fire ignition and 
spread. Unfortunately remote sensing cannot suitably measure 
dead fuel moisture content since in forested areas optical 
signals from dead fuel on the forest floor may not penetrate 
the canopy. However interpolated values of dead fuel 
moisture measured at weather stations can be used to calculate 
a FSI for dead fuel. The FSI of live fuel (FSIL) and dead fuel 
(FSID) can then be linearly combined with proper weighting to 
compute a reinforced combined FSI. Relative greenness (RG), 
a measure of fractional vegetation cover of the pixel can be 
used for this weighting 

         FSI = RG.FSIL + (1-RG).FSID                                 (3) 
Here (1-RG) serves as a measure of the fractional amount of 
dead fuel. In this paper, however we only restrict ourselves to 
the computation of FSI for live fuels. 

III. FSI RETRIEVALS IN GEORGIA 
Our study region is one of most fire prone regions of south-

eastern USA. It encompasses the state of Georgia and lies 
within 300N to 350N and 810W to 850W (Fig. 2).   

 
FSI retrievals in our study region would require us to 

retrieve fuel temperature and live FMC. Our approach towards 

live FMC retrievals is to correlate daily measured values of 
live woody FMC at selected Georgia Forestry Commission 
weather stations across the study region with corresponding 
MODIS derived daily values of NDVI/ST. This analysis 
allows us to construct a simple linear regression equation 
relating NDVI/ST to live FMC values.  Studies have related 
foliage moisture content with NDVI/ST, since the relation 
between leaf (bearing chlorophyll) moisture content and 
NDVI is more obvious. However a significant correlation of 
about 0.97 between live herbaceous moisture content (ground 
observations at same stations) and live woody moisture 
content in this case leads us to presume that live woody 

moisture content can also be estimated from NDVI/ST. 
 
In the first step manual scanning of MODIS-aqua daytime 

RGB images during the spring and early summer months of 
2004 was employed to select 10 cloud free days over the 
region (Table 1). MODIS/Aqua Calibrated Radiances 5-Min 
L1B Swath 1km (MYD021KM, Ver 4) , MODIS/Aqua 
Geolocation Fields 5-Min L1A Swath 1km (MYD03, Ver 4) 
and MODIS Aqua Land Surface Temperature Daily L3 Global 
1km  (MYD11A1, Ver 4)  data products were then acquired 
for these 10 days. The top of atmosphere reflectances at band 
1(ρ0.65), band 2(ρ0.86) from the L1B swath products, were then 
corrected for sensor zenith angle using sensor zenith angle 
values from the MYD03 datasets. These corrected reflectances 
were then combined as (ρ0.86-ρ0.65)/(ρ0.86-ρ0.65) to derive NDVI 
images. Surface temperature images are also computed for 
these 10 days using MODIS-Aqua land surface temperature as 
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Fig. 3.  Scatter plot of MODIS derived NDVI/ST versus ground station 
observed live woody FMC. The least square line is also shown 

 

a proxy for fuel temperature. While this may not be an 
optimum way to retrieve fuel temperature especially in non-
forested areas, in forested areas surface temperature can serve 
as an approximate measure. There have been instances of 
using satellite derived surface temperature as measures of leaf 
temperature (Chuvieco et al 1999, 2003, 2004). 

 

Four Georgia Forestry commission stations were selected so 
that together they may represent all the surface types relevant 
to the forested regions in Georgia. The names, locations, and 
the surface types in the 3x3 pixels surrounding the station 
location are given in Table 2. Fig 2 shows the BGC biome 
surface type (running et al 1994) derived from MODIS Terra 
Yearly 1km Land Cover Type (MOD12Q1, Ver 4 ) data of 
2001. Live woody and live herbaceous daily data were 
acquired from the Georgia Forestry Commission Weather 
/NFDRS data Retrieval System at 
http://weather.gfc.state.ga.us/Getwxdata/Getwxdata.aspx. The 
FMC ground measurements were taken at 1.30pm (EST) at 
around the same time of Aqua overpass (1pm local time). 

NDVI/ST were then computed for each of the 4 stations on 
each of the 10 days by averaging over 3x3 pixels centred on 
each of the station locations (to minimize the consequences of 
residual misregistrations) and then correlated with live woody 
FMC measured on the same day. NDVI/ST values of pixels 
having scan angles greater than 300 were not considered for 
deriving the regression equation since larger pixel sizes at 
such scan angles would deteriorate the validity of the 
regressed equation. Pixels identified as water by the land sea 
mask image derived from the MODIS geolocation product 
were not considered for computing the averages. Fig 3 shows 
the scatter plot of the NDVI/ST and live woody FMC values. 
The equations were derived from 20 pairs which survived the 
scan angle restriction (<300). The Pearson determination 
coefficient R2 is 0.54 with significance value of 0.0002. The 
regressed least square equation derived is 

FMCwoody=33760x(NDVI/ST)+49 with a standard error of 6.6. 
Given the host of biophysical to geometrical factors that serve 
to confound the relationship between NDVI/ST and live 
woody FMC, the R2 value are quite consistent with expected 
results.  Of course the estimation capability of live woody 
FMC in our case depends closely on the quality of data used, 
the range of conditions under which the data was collected 
and the data range used in building the model. 

Using the regression equation derived above we compute 
the live woody FMC images for the 10 selected days. The live 

Woody FMC retrieval algorithm works fairly well in forested 
regions, but in urban areas it fails. A low NDVI in urban areas 
is estimated as low FMC by the NDVI/ST index, when 
however the low NDVI is caused by a lower fractional 
vegetation cover. To address this issue we have masked the 
urban areas in FMC images using the BGC biome surface 
types. We also build the fuel temperature images which is 
actually MODIS surface temperature. Corresponding images 
of live woody FMC and fuel temperature are then combined 
using the FSI equation to retrieve FSI images. Fig 4 shows the 
Fuel Temperature, Live Woody FMC and FSI images for 
three days in 2004 (March 22,April 17,May 4). Urban areas 
have been masked out. March 22nd represents early spring and 
it is the start of the growth season. April 17th is in the middle 
of spring, while May 5th is summer time. FSI captures the fire 
risk during this time quite well. During the beginning of the 
growth season, fire risk is higher on the average; it decreases 
during the middle of spring when vegetation is gaining 
moisture until during summer vegetation is fully grown 
reducing the fire risk further.  

Validation of the FSI was not undertaken since the primary 
objective of this short paper was to introduce the index. 
Moreover validation of fire risk indices is generally not 
straightforward. One way to validate is to verify if the 
probability distributions of FSI for actual fire locations are 
significantly different from the probability distributions of the 
non-fire pixels. Even so the relation between fire occurrence 
and fire risk is not simple, since fire only occurs when an 
ignition cause is present even if the FMC is high and fire risk 

TABLE 1 
CLOUD FREE DAYS SELECTED DURING SPRING AND SUMMER OF 2003, 2004 

 
Year Selected Dates 

2004 March 22, March 23, April 3, April 4, April 5, 
April 15, April 17, April 28, May 4, May 5 

 

TABLE 2 
GEORGIA FORESTRY COMMISION WEATHER STATIONS, LOCATIONS AND 

SURFACE TYPES AT 3X3 PIXELS AROUND THEM 

Station Location Surface Type 

Adel 31.11N , 83.43W Evergreen Broadleaf, Annual 
Broadleaf 

Byromville 32.17N, 83.97W Deciduous Broadleaf, Annual 
Broadleaf, Annual Grass 

Dallas 33.83N, 84.74W Deciduous Broadleaf 

Metter 32.39N, -82.04W Evergreen Broadleaf, 
Deciduous Broadleaf, Annual 
Broadleaf 
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Fig. 4. Surface temperature, live woody FMC and FSI images for three days in 2004; first row : March  23 2004, second row: April 17 2004; third row: May 5 
2004. first column represents ST, second column shows live woody FMC and third column shows FSI 

 

is low (Chuvieco et al 1999). However, validating FSI 
remains a future task for us.  

IV. CONCLUSION 
We have introduced a new short term fire risk index called 

the fire susceptibility index (FSI). The concept of FSI is 
rooted in the idea of heat energy of preignition or the heat 
required to ignite woody fuel. This physical basis endows FSI 

with the potential of estimating probability of ignition from 
firebrands or lightning; although this needs to be investigated 
further. No validation efforts were undertaken in this short 
paper. We feel that since FSI originates from a physical 
concept, the estimation of fire risk using FSI is quite 
reasonable although validation efforts to justify FSI would 
definitely need to be pursued in the future. Robust techniques 
estimating FMC and fuel temperature more accurately would 
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obviously reinforce the validity of the FSI. FSI could be 
computed at a daily scale from MODIS direct broadcast level 
1B products or as 16 day products derived from MODIS 16 
day NDVI composites and MODIS 8 day LST products and 
hence can be beneficial to the forest community in better 
management of wildfires or prescribed fires.  
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