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Abstract— Contemporary research has shown that remote 

sensing techniques can be used for estimating live fuel moisture 
content (FMC) from space. These remote sensing based live FMC 
measurements must conform to some accuracy requirements to 
be of any practical use in fire behavior predictions. This paper 
thus investigates the potential errors in live FMC estimations 
using two simple established techniques and analyzes the 
implications of such errors in fire behavior predictions using a 
sensitivity analysis. We study the sensitivity of fire behavior to 
live fuel moisture content under dry no-wind, no-slope conditions 
using the FARSITE surface fire behavior model with the 
objective of evaluating the current satellite based FMC 
estimation techniques and presenting a basis for accuracy 
requirements of live FMC retrievals using more sophisticated 
remote sensing techniques in the future. 

I. INTRODUCTION 
UEL moisture content (FMC) in vegetation is one of the 
most critical factors driving wildfire susceptibility and 
wildfire behavior. Contemporary research has shown that 

remote sensing techniques can be used for estimating live 
FMC from space. Remote sensing techniques utilizing optical 
and thermal infrared sensors have resorted primarily to two 
ways of measuring live FMC (ratio of the moisture content 
weight to the dry weight of the fuel expressed as a 
percentage): (i) estimating vegetation status or vegetation 
stress as a proxy for estimating live FMC and (ii) the direct 
estimation of live FMC. The former indirect methods seek to 
exploit the obvious correlation between vegetation greenness 
(chlorophyll content) and its moisture content. Consequently 
vegetation indices, like the Normalized Difference Vegetation 
Index (NDVI) (Chuvieco et al 1999, 2002), or its variations 
like relative greenness (RG) (Burgan & HartFord, 1997; 
Chuvieco et al 2002) have been found useful in estimating live 
FMC. Potential improvements in live FMC estimations has 
been observed by incorporating satellite derived Surface 
Temperature (ST), since ST would be expected to increase in 
drier plants on account of reduced evapotranspiration 
(Chuvieco et al 1999, 2004). Specifically the ratio NDVI/ST 
was found to be very useful (Chuvieco et al 1999, 2004). 
However vegetation indices have limitations in estimating 
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vegetation water content since the relation between 
chlorophyll content and moisture content is not always 
straightforward and has been found to be plant species 
dependent (Jackson et al 2004). Apart from water stress, 
variations in chlorophyll content can be caused by 
phenological status of the plant, atmospheric pollution, 
nutrient deficiency, toxicity, plant disease and radiation stress 
(Larcher 1995). Moreover NDVI saturates at intermediate 
vales of leaf area index (LAI), and therefore is not responsive 
to the full range of live FMC (Gao 1996, Jackson et al 2004). 
Direct methods of vegetation water estimations typically 
utilize water absorption channels in the shortwave infrared 
(SWIR) and contrast it with near infrared (NIR) channels to 
account for the variations in reflectance due to leaf internal 
structure and dry matter content. Several indices based on 
SWIR and near infrared (NIR) reflectances have been 
proposed for this purpose such as NDWI Normalized 
Difference Water Index (Gao 1996); SRWI, the Simple ratio 
water index (Zarco-Tejada & Ustin 2001, Zarco Tejada et al 
2003); LWCI, the Leaf water content index (Hunt et al 1987); 
GVMI, the Global vegetation water moisture index (Ceccato 
et al 2002). An inherent feature of these SWIR-NIR based 
indices is that they are more related to quantity of water per 
unit area (equivalent water thickness (EWT) per unit area) 
rather than the FMC, the quantity of water per unit of dry 
vegetation weight (Ceccato et al 2002, Jackson et al 2004). 
Various empirical and semi-empirical relationships have been 
used to estimate live FMC with reasonable accuracy. However 
if live FMC is to be estimated with greater accuracy, it would 
be necessary to fully understand the relative contribution that 
the spatial and temporal variation in the biophysical (leaf area 
index, leaf orientation, leaf size), geometric (solar and view 
zenith and azimuth angles), background (soil and or non-
photosynthetically active vegetation) and atmospheric factors 
make to reflectance variability at the canopy or leaf level 
(Cohen 1991, Jacquemond & Ustin 2003, Bowyer and Danson 
2004). In the perspective of all these imminent challenges, 
remote sensing based live FMC estimation techniques must 
conform to some accuracy requirements to be of any practical 
use in fire conditions monitoring. An obvious use of live FMC 
measurements would be to estimate the potential burnt area in 
event of a real or a prescribed fire. Fire behavior models are 
key tools that are used to estimate the extent of the burn and 
the intensity and duration of burning in event of a fire (Burgan 
and Rothermel 1984, Penny 1998).  Live fuel moisture is one 
of the key input parameters to these fire behavior models since 
it has a strong control on initial probability of ignition, 
burning efficiency, and the rate of fire propagation (Rothermel 
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1972, Cohen et al 1990, Bowyer and Danson 2004). This 
paper thus investigates the potential errors in live FMC 
estimations using two simple established techniques and 
analyzes the implications of such errors in fire behavior 
predictions by employing a sensitivity analysis. We study the 
sensitivity of fire behavior to live fuel moisture content using 
the FARSITE surface fire behavior model (Finney 1998) with 
the objective of evaluating the current techniques and 
presenting a basis for accuracy requirements of live FMC 
retrievals using more sophisticated remote sensing techniques. 
We focus our study on the Georgia region, in south eastern 
USA.  

II. FIRE BEHAVIOR MODEL 
Since we intend to do the sensitivity analysis using the 

FARSITE surface fire behavior model, a very brief overview 
of the model becomes pertinent to our current discussion. 
Surface fire spread rates at a particular time are typically a 
function of fuel model, live and dead fuel moisture content, 
wind and slope. Fuel models such as Anderson’s fuel model 
(Anderson, 1982) or the NFDRS fuel model (Bradshaw et al 
1984) were introduced for mapping a heterogeneous and 
discontinuous fuel bed and can be defined as a set of the fuel 
type parameters that best describes the fuel bed and can serve 
as input to a fire behavior model. Fuel moisture is the more 
dynamic component of fire spread rate computations. Live 
fuel moisture is controlled by the physiological processes of 
the plant (Bradshaw et al 1984) and are much less dependent 
on atmospheric conditions given their mechanisms to extract 
water from the soil reserve and reduce evapotranspiration 
(Chuvieco et al 2004). Live fuels are classified into 
herbaceous plants (grasses, forbs, ferns etc) and woody 
shrubs. Moisture content in dead fuels on the other hand is 
exclusively controlled by environmental conditions such as 
temperature, radiation, relative humidity, wind and 
precipitation and their variation can be modeled from these 
factors (Bradshaw et al 1984). Dead fuel is classified into 1 
hour, 10 hour and 100 hour classes depending on the time 
required to lose approximately two-thirds of their initial 
moisture content under constant conditions (Rothermel et al, 
1986).  

The surface fire spread rate model used in the FARSITE is 
the well-known Rothermel spread equation (Rothermel et al 
1972) which gives us the steady state fire spread rate (m/min) 
in a plane parallel with the ground surface at any point on a 
landscape. 
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In the denominator Qig (kJ/kg) is the heat of pre-ignition 
and is defined as the heat required in bringing a unit weight of 
fuel to ignition. pb (kg/m3) is the actual ovendry bulk density 
of fuel while the effective heating number ε represents the 
fraction of the actual bulk density involved in the ignition 
process. In the numerator (Ip)0 (kJ/m2-min) is the heat flux 
absorbed by a unit volume of fuel at the time of ignition under 
no wind and no slope conditions. Wind and slope increase this 

basic heat flux by exposing the potential fuel to additive 
convective and radiant heat from the approaching fire front. 
Φw and Φs represent this additional propagating flux due to 
wind and slope respectively. They are dimensionless 
coefficients depending on wind, slope and fuel conditions. 
The rate of spread in equation (1) in a sense is a ratio between 
heat flux received from the source (heat source) in the 
numerator and the heat required for ignition by the potential 
fuel (heat sink) in the denominator. Various parameters for the 
above equation were determined analytically or empirically 
through carefully conducted experiments (Rothermel, 1972).  
Fuel Moisture Content enter into fire spread equation through 
(Ip)0 and Qig With increase in fuel moisture, (Ip)0 decreases 
while Qig increases resulting in an decrease in fire spread rate. 
A particular fuel model, however, is a heterogeneous mixture 
of live and dead fuels with a different spread rate for each 
class.  To arrive at a single spread rate value, the FARSITE 
finds a singular characteristic spread rate by surface area 
weighting of the spread rates for the different dead and live 
fuel classes. 

Fire growth modeling in FARSITE is carried out using a 
vector approach as described in Richards, 1990. FARSITE 
requires various inputs to drive fire simulation. Landscape 
inputs are described as raster files and include fuel model, 
slope, aspect, elevation. Weather inputs include daily 
observations of maximum and minimum temperature and 
relative humidity, the time of these maximum and minimum 
readings, and the amount of precipitation. Inputs of latitude, 
dates and canopy cover and cloud cover are used to estimate 
the amount of solar radiation reaching the dead fuel. Weather 
inputs and the estimated solar radiation are used to model the 
changes in dead fuel moisture over course of the fire 
simulation period. Predictions of temperature and humidity 
during the simulation are made using a diurnal weather pattern 
in which temperature and humidity are assumed to respond 
inversely over time as approximated by a cosine curve 
between the maxima and the minima (Finney, 1998). Fuel 
moisture inputs include initial fuel moistures of 1 hour, 10 
hour, 100 hour dead fuels, and herbaceous and woody live 
fuel for each fuel model within the landscape. 

III. EXPERIMENTAL METHODOLOGY 
Our study region is one of most fire prone regions of south-

eastern USA. It encompasses the state of Georgia and lies 
within 300N to 350N and 810W to 850W (Fig. 1).   

The first part of our study is concerned with estimating the 
amount of errors possible while estimating live herbaceous 
and live woody FMC using simple linear relations with 
(i)NDVI/ST and (ii) NDWI.  Our approach towards live FMC 
retrievals is to correlate daily measured values of live woody 
FMC at selected Georgia Forestry Commission weather 
stations across the study region with corresponding MODIS 
derived daily values of NDVI/ST and NDWI. This analysis 
allows us to construct simple linear regression equations 
relating NDVI/ST and NDWI to live FMC values.  Studies 
have related foliage moisture content with satellite derived 
indices. However a significant correlation of about 0.97 
between live herbaceous moisture content (ground 
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Fig. 1.  Study Region in Georgia, USA showing the BGC biome surface types 
(1-Evergreen Needleleaf Vegetation; 2- Evergreen Broadleaf Vegetation; 3- 
Deciduous Needleleaf vegetation; 4- Deciduous Broadleaf  vegetation; 5- 
Annual Broadleaf vegetation; 6-Annual Grass Vegetation; 7-Non-vegetated 
land; 8-Urban) 

observations at same stations) and live woody moisture 
content in this case leads us to presume that live woody 
moisture content can also be estimated from these indices. 

In the first step manual scanning of MODIS-aqua daytime 
RGB images during the spring and early summer months of 
2004 was employed to select 10 cloud free days over the 

region (Table 1). MODIS/Aqua Calibrated Radiances 5-Min 
L1B Swath 1km (MYD021KM, Ver 4), MODIS/Aqua 
Geolocation Fields 5-Min L1A Swath 1km (MYD03, Ver 4) 
and MODIS Aqua Land Surface Temperature Daily L3 Global 
1km  (MYD11A1, Ver 4)  data products were then acquired 
for these 10 days.  

The top of atmosphere reflectances at band 1 at 0.65µm 
(ρ0.65), band 2 at 0.86µm  (ρ0.86) and band 7 at 2.1µm (ρ2.1), 
were then corrected for sensor zenith angle using sensor 
zenith angle values from the MYD03 datasets. These 
corrected reflectances were then combined as (ρ0.86-
ρ0.65)/(ρ0.86+ρ0.65) and (ρ0.86-ρ2.1)/(ρ0.86+ρ2.1)  to derive NDVI 
and NDWI7 images respectively. The 2.1 µm band has been 
identified as a water absorption band and the corresponding 
LandSat band has been used to retrieve vegetation water 
content information in the past (Chuvieco et al 1999,2002). 
Fuel temperature images are also computed for these 10 days 
using MODIS-Aqua land surface temperature as a proxy for 
fuel temperature. While this may not be an optimum way to 
retrieve fuel temperature especially in non-forested areas, in 
forested areas surface temperature can serve as an 
approximate measure. There have been instances of using 
satellite derived surface temperature as measures of leaf 
temperature in the current literature (Chuvieco et al 1999, 
2003, 2004). 

Four Georgia Forestry commission stations were selected so 
that together they may represent all the major surface types 
relevant to the forested regions in Georgia. We intend to build 
a surface type independent model for FMC estimation. Four 
other stations were selected to test the regression model for 
estimating live FMC from satellite indices. The names, 
locations, and the surface types in the 3x3 pixels surrounding 
the station location for all these eight are given in Table 2. 
The first four were used to construct the regression models, 
while the next four were used for testing the model. Fig 1 
shows the BGC biome surface type (Running et al 1994) 
derived from MODIS Terra Yearly 1km Land Cover Type 
(MOD12Q1, Ver 4 ) data of 2001. Live woody and live 
herbaceous daily data were acquired from the Georgia 
Forestry Commission Weather /NFDRS data Retrieval System 
at http://weather.gfc.state.ga.us/Getwxdata/Getwxdata.aspx. 
The FMC measurements at these stations were taken at around 
1.30pm (EST) at around the same overpass time of Aqua 
(1pm local time). 

NDVI/ST and NDWI7  were then computed for each of the 
4 stations on each of the 10 days by averaging over 3x3 pixels 
centred on each of the station locations (to minimize the 
consequences of residual misregistrations) and then correlated 
with live woody FMC measured on the same day. NDVI/ST 
and NDWI7 values of pixels having scan angles greater than 
300 were not considered for deriving the regression equation 
since larger pixel sizes at such scan angles would deteriorate 
the validity of the regressed equation. Pixels identified as 
water by the land sea mask image derived from the MODIS 
geolocation product were not considered for computing the 

TABLE 1 
CLOUD FREE DAYS SELECTED DURING SPRING AND SUMMER OF 2003, 2004 

 
Year Selected Dates 

2004 March 22, March 23, April 3, April 4, April 5, 
April 15, April 17, April 28, May 4, May 5 

 TABLE 2 
GEORGIA FORESTRY COMMISION WEATHER STATIONS, LOCATIONS AND 

SURFACE TYPES AT 3X3 PIXELS AROUND THEM 

Station Location Surface Type 

Adel 31.11N , 83.43W Evergreen Broadleaf, Annual 
Broadleaf 

Byromville 32.17N, 83.97W Deciduous Broadleaf, Annual 
Broadleaf, Annual Grass 

Dallas 33.83N, 84.74W Deciduous Broadleaf 

Metter 32.39N, -82.04W Evergreen Broadleaf, 
Deciduous Broadleaf, Annual 
Broadleaf 

Athens 33.90N, -83.37W 
 

Evergreen Broadleaf, 
Deciduous Broadleaf, Annual 
Broadleaf 

Camilla 31.21N,  84.24W Evergreen Broadleaf, Annual 
Broadleaf 

Dawsonville 34.38N, 84.06W 
 

Evergreen Broadleaf, 
Deciduous Broadleaf, Annual 
Broadleaf 

Sterling 31.26N,  81.61W Evergreen Needleleaf, 
Evergreen Broadleaf 
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Fig. 2. (a) Location of the Okefenokee National Wildlife Refuge Area  (b) Elevation (c) Percent Tree Cover (d) NFDRS Fuel Model 

 

averages. Residual analysis was then performed to estimate 
the potential errors inherent in these techniques. 

The second part of our study is to investigate the sensitivity 
of fire behavior to live herbaceous and live woody fuel 
moisture. This would allow us to analyze the implications of 
errors in satellite-based estimations of live FMC towards 
predictions of fire behavior. For this purpose we have selected 
one of the most fire-prone regions in Georgia, the Okefenokee 
National Wildlife Refuge area between 30.5N-31.5N and 
82W-83W (Fig 1(a)). The Blackjack Bay Complex fire as it is 
called burnt around 95000 acres of the refuge during the 
summer of 2002 (Source: USGS; National Burn Severity 
Mapping Project). Simulating fire behavior using FARSITE 
requires us to define the landscape. Generating the landscape 
for FARSITE requires us define the fuel model, elevation, 
slope, aspect and canopy cover layer for the Okefenokee 
region (Fig 2a). For topography we use GTOPO30 data which 
is a global DEM dataset with a horizontal grid spacing of 30 

arc seconds (approximately 1 kilometer) and was derived from 
several raster and vector sources of topographic information 
by the US Geological Survey. Fig 2b shows the elevation 
image of Okefenokee. We also used the Moderate Resolution 
Imaging Spectroradiometer (MODIS) continuous vegetation 
cover data product (MOD44B) for the year 2000 to estimate a 
mean canopy cover over our study region. The MOD44B 
product is a level 4 dataset with 500m spatial resolution and 
provides yearly estimates of percent tree cover for all regions 
of the earth (Hansen et al 2003). Fig 2c shows the percent tree 
cover distribution for the Okefenokee region. For fuel model 
distribution we used the NFDRS fuel model dataset from 
Wildland Fire Assessment System (WFAS, 
http://www.fs.fed.us/land/wfas/nfdr_map.htm ) operated by 
the National Interagency Fire Center (NIFC), Boise, Idaho. 
National Fire Danger Rating fuel models have been mapped 
across the lower 48 states at 1 km resolution [14]. Figure 2d, 
shows the fuel model distribution for the study region.  
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The error estimates inferred from our study would be 
dependent on the accuracy of the FARSITE model. The most 
important result of the FARSITE tests to date has been that 
spread rates for all fuel models tended to be over predicted by 
the Rothermel spread equation (FARSITE technical 
documentation, Sanderlin and Sunderson, 1975). This over 
prediction have been attributed to data and model 
inaccuracies. For example, the time and space-averaged winds 
(e.g. hourly), spatially homogenized fuels within rasters, 
topographic representations may be too coarse to capture the 
true fine-scale variability in fire environment (temporal or 
spatial) that keeps fire actually spreading at variable rates. 
This could force the average fire spread rate over large areas 
and long time spans to be over predicted. The nonlinear 
relationship between wind speed, fire acceleration, and fire 
spread rate means that the average wind speed cannot be 
expected to predict the average spread rate (Richards 1993).  

The use of real landscapes thus would be a hindrance in 
making meaningful inferences from the sensitivity analysis 

since fire behavior simulation results in such case would 
depend on the topography, fuel model distribution, canopy 
cover distribution and the starting point of ignition. Instead 
what we need for our proposed study are experimental flat 
landscapes with constant fuel models and constant canopy 
cover that are representative of the study region. The wind is 
kept at zero, while the simulation period is set to 24 hours for 
our simulation. A no-wind, a flat (no-slope) homogenous 
single fuel model landscape assumption along with a short 
simulation period is expected to keep the over predictions 
limited to a reasonable extent.  

The region elevation derived from GTOPO30 data ranges 
from 3m to 98m with a mean elevation of about 41m and a 
standard deviation of 14.2 m implying that a flatland 
approximation would not be inappropriate for our 
experiments. The mean tree cover derived using MOD44B is 
54% which we use as our constant landscape canopy cover 
percentage. As for fuel model distribution, the NFDRS fuel 
model data shows that two fuel models viz – fuel model O 
(Southern rough) and fuel model D (High Pocosin) cover 
almost 90% of the wildlife refuge area. Fuel type parameters 
pertaining to these two fuel model parameters are given in 
Table 3. Two experimental landscapes most representative of 
the study region are therefore used for our sensitivity studies. 
Details of these experimental landscapes are given in Table 4.  

The variables for which we conduct the sensitivity analysis 
are live herbaceous fuel moisture and live woody fuel 
moisture, since these are the ones that remote sensing 
techniques would retrieve. Our experiments would be ‘One At 
a Time’ experiments in which the impact of changing the 
values of each live fuel moisture factor is evaluated while 
keeping the other factor fixed at some nominal value. The 
value range for each live fuel moisture variable and their 
nominal values are specified in Table 5.  The 1978 NFDRS 
technical documentation (Bradshaw et al, 1984) mentions the 
ranges of live herbaceous fuel moistures from 30% to 200%, 
while for live woody fuel moisture the ranges are from 50% to 
250%. Towards the lower end of the moisture scale 
herbaceous plants are considered cured at 30% moisture 
content and woody plants dormant if their moisture content 
dropped to 50%. In keeping with these ranges our experiments 
span the range 50% to 185% for live woody fuel moisture and 
30% to 235% for live herbaceous fuel moisture. Burgan, 1979 
estimated the live fuel moisture content for wet, normal and 
dry seasons. His work indicated that live fuel moistures of 
80% and 50% are reasonable estimates for woody and 
herbaceous fuel respectively during a very dry season. 

TABLE 3 
PRIMARY FUEL MODELS IN STUDY REGION 

 
Fuel Loading (tons/acre) Surface Area to Volume 

 (ft-1) 
Fuel  

Model  
%Area 

1hr 10hr 100hr Live 
woody 

Live 
herb. 

1 hr Live 
Woody 

Live 
Herb. 

Fuel 
bed 

depth 
(ft) 

Dead Fuel 
moisture 

of 
extinction 

(%) 

Heat Content (all 
fuels) 
Btu/lb 

High  
Pocosin (O) 

61.12 2.0 3.0 3.0 7.0 - 1500 1500 - 4.0 30 9000 

Southern rough 
(D) 

30.83 2.0 0.5 - 3.0 .75 1250 1500 1500 2.0 30 9000 

 

TABLE 4 
EXPERIMENTAL LANDSCAPES 

Landscape Fuel Model Canopy 
Cover 

Elevation 
(m) 

Latitude 

LandscapeO O (High 
Pocosin) 

61% 41 310N 

LandscapeD D (Southern 
Rough) 

61% 41 310N 

 
TABLE 5 

NOMINAL VALUES AND RANGES FOR  LIVE FUEL MOISTURE 

Fuel Moisture Content 
(%) Range Nominal Value 

Live Herbaceous 30 – 235 50 

Live Woody  50 - 185 80 

 
TABLE 6 

NOMINAL VALUES FOR DEAD FUEL MOISTURE  & WEATHER VARIABLES 

Variable Nominal Value 

1hour and 10 hour dead FMC 6 
100 hour dead FMC 6 
Temperature (0F) 85 
Relative Humidity (%) 30 
Wind speed (m/h) 0 

Rainfall Nil 

Cloud Cover (%) 0 
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TABLE 8 
OAT  SENSITIVITY ANALAYSIS 

High Pocosin  (Fuel Model O) Southern Rough (Fuel Model D) Fuel Moisture 
Content (%) 
p 

 
Range 

 
     R2 

Slope 
∆A(m2) / ∆p 

 
Range 

 
     R2 

Slope 
∆A(m2) / ∆p  

Live herbaceous 
FMC 

50-235 1.0 0 50-235 0.99 -4425.8 

50-95 0.99 -118983 Live Woody FMC 
95-185 0.97 -1436.2 

50-185 0.93 -15118 

 

 
Fig. 3 (a) NDVI/LST versus Live Woody FMC ; (b) NDWI7 versus Live Woody FMC;  (c) NDVI/LST versus Live Herbaceous FMC ; (d) NDWI7 versus Live 
Herbaceous FMC; 

 

Nominal values for the dead fuel moisture factors and weather 
factors during the simulation experiments are specified in 
Table 6. The nominal values for dead fuel moisture in the 1 
hour, 10 hour and 100 hour classes are set at 6%, 6% and 8% 
representing high burning conditions. The nominal values of 
temperature, relative humidity and wind speed are 
representative of a hot (800 F), dry (30% relative humidity) 
and windless (wind speed of 0m/h) day.  Overall the nominal 
values represent moderately high burning conditions. 

IV. RESULTS AND DISCUSSION 
Fig 3 shows the scatter plot and derived least square 
regression lines of NDVI/ST and NDWI7 with live woody 
FMC values live herbaceous FMC values. The equations were 
derived from 20 pairs which survived the scan angle 
restriction (<300). The Pearson determination coefficients 
(R2), significance of correlation values (p), least square 
regression equation and the standard error are shown in Table 
7. R2, also called the goodness of fit, represents the fraction of 
variance in the satellite derived indices explained by live FMC 
(woody or herbaceous). Given the host of biophysical to 
geometrical factors that serve to confound the relationship 
between satellite derived indices and live FMC, the R2 values 
are quite consistent with expected results. Bowyer and 
Danson, 2004 found R2 values of 0.42 and 0.47 between 
PROSAIL and PROGEOSAIL simulated NDWI and FMC 
under site specific conditions. Their NDWI was defined using 
1.24 µm SWIR band instead of the 2.1 µm SWIR band. Using 
an empirical model to estimate live FMC from NDVI, ST and 
the day of the year in different Spanish sites, Chuvieco et al 
2004 reported R2 values ranging from 0.665 to 0.857 and 
standard errors ranging from 11.34 to 17.58 between observed 
and estimated live FMC.   Of course the estimation capability 
of live woody FMC in our case depends closely on the quality 
of data used, the range of conditions under which the data was 
collected and the data range used in building the model. 

TABLE 7 
LEAST SQUARE REGRESSION 

Variable pair R2 Regression 
equation 

Standard 
Error 

NDVI/LST (x) 
, Live Woody 
FMC (y) 

0.54 
(p= 
0.0002) 

y=33760x +49 6.6 

NDWI7 (x), 
Live  Woody 
FMC (y) 

0.47 
(p= 
0.0008) 

y=54.35x+85.91 7.04 

NDVI/LST (x) 
, Live 
Herbaceous 
FMC(y) 

0.37 
(p= 
0.005) 

y=41496x+2 11.49 

NDWI7 (x), 
Live 
Herbaceous 
FMC(y) 

0.30 
(p= 
0.01) 

y=64.59x+47.3 12.06 
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Fig. 4 Top Panel: Box plots of residuals in estimating Live Woody FMC (LWFMC) and Live Herbaceous FMC (LHFMC) using  NDVI/LST and NDWI7 in 
(Adel, Byromville, Dallas, Metter). Bottom panel: Box plots of residuals in estimating Live Woody FMC (LWFMC) and Live Herbaceous FMC (LHFMC) 
using  NDVI/LST and NDWI7 in (Athens, Camilla, Dawsonville, Sterling). 

Differences between the modeled values and the actual 
observations i.e. the residuals are determined separately for 
the four stations that were used to construct the models, as 
well the other four stations that were selected for testing the 
model. The box plots of the residuals in the eight cases, i.e. 
Live woody FMC and Live Herbaceous FMC estimation using 
NDVI/ST and NDWI7 in (Adel, Byromville, Dallas, Metter) 
and (Athens, Camilla, Dawsonville, Sterling) are shown in Fig 
4. Residuals play a key role in evaluating model adequacy and 
can be viewed as realizations of model errors (Montgomery et 
al 2001). The results of the residual analysis are summarized 
in Table 8 which shows the mean absolute error and 
maximum absolute errors in the eight cases. The results show 
that average expected errors can be about 9 for live woody 
FMC and about 14 for live herbaceous FMC. The maximum 
errors can be in the range of 25 for live woody FMC and 35 
for live herbaceous FMC. It must be noted that this obviously 
is a best case estimate of errors since the residuals were 
computed in the same region and during the same season and 
year from which the least square model was constructed. 
Higher errors are very likely if the models were employed 
elsewhere or even during some other season or year. Estimates 
of errors in FMC estimation were reported in Chuvieco et al 
2003 where live Fuel Moisture Content was estimated by an 
empirical model using NDVI/ST and RG. The latter model 
was constructed by correlating NOAA AVHRR data and 
ground observations in Spanish sites during the period 1996-

1997. Their error estimates are a little higher since the model 
was calibrated over two full years and was thus season 
independent. The mean absolute errors for grasslands and 
shrublands for the period 1996-1997 reported in that study 
were 26.418 and 15.424, while the mean error for grassland 
and shrubland combined was about 20.921. The mean 
absolute errors for the period 1998-1999 were a little higher at 
32.223 for grasslands and 15.718 for shrublands.  

With these estimates of potential errors in satellite derived 
live FMC, we then investigate the implications of these errors 
in fire behavior predictions. The next part of the study uses 
FARSITE to determine the sensitivities of live FMC to fire 
behavior on the simulated landscapes representative of the 
Okefenokee region. All the FARSITE runs are done during a 
typical summer day for 24 hours from morning 8am to 8am on 
the next day. The diurnal variation in temperature, humidity or 
wind is not accounted for since we keep these factors constant 
throughout the 24 hours of simulation. The solar radiation, 
however, does change depending on the Sun’s altitude 
reaching a maximum at solar noon and dropping to zero after 
sunset. Dead FMC is modeled in FARSITE to vary in 
response to the current weather conditions.  

Fig 5 shows the effects of changing one live fuel moisture 
factor while keeping all other fuel moisture and weather 
factors fixed at their nominal values. They represent the 
amount of change the factor alone can induce on the burn area 
over a period of 24 hours. In order to determine the 
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Fig 5. Effect of each live FMC on fire behavior while keeping all other factors 
at a fixed nominal value (Table 5). Top: Live herbaceous FMC; Bottom: Live 
Woody FMC 

sensitivities, we fit our input FMC and output burnt area pairs 
to straight lines. The R2 values give an estimate of the 
goodness of fit which are all quite high. The slopes of the 
linear fit serve as a measure of the sensitivity of wildfire 
behavior to the concerned live FMC factor. Table 9 shows the 
R2 values and the slopes for the linear fits for the two fuel 
model cases. The values under the slope column give us the 
error in estimating the burn area in m2 induced by a single 
ignition point over 24 hours for an error of 1% in estimating 
the corresponding FMC parameter. These error estimates are 
under dry, no-wind, no slope conditions.  

As expected fire behavior has a negative relationship to live 
FMC, with burnt areas decreasing with increase in live FMC. 
In southern rough fuels a 1% error in estimating live 
herbaceous fuel moisture may lead to an erroneous estimation 
of 4425.8 square meters for burnt areas over 24 hours. 
Pocosin fuels do not show any such error due to the absence 
of any fuel loading of the live herbaceous type. Live woody 
FMC shows an interesting relationship with fire behavior in 
pocosin fuels. Fire behavior remains very sensitive to live 
woody FMC in pocosin in the low FMC range below 95% 
where a 1% error in estimating live woody FMC translates to 

an error of around 118983 m2 in burn area estimation. This 
error significantly reduces to only 1436.2 m2 above 95% 
FMC. For southern rough the sensitivities remain relatively 
stable over the whole live woody FMC range with errors of 
15118 m2 for every 1% error in live woody FMC estimation. 
Overall fire behavior seems to be more sensitive to live woody 
FMC than live herbaceous FMC.  

In the light of these sensitivity results and our previous 
estimates of mean and maximum errors of estimating live 
FMC from space we could compute the errors in fire area 
estimations over a day under the simulated dry, no-wind, no-
slope conditions. A mean error of about 14 or a maximum 
error of about 35 in estimating live herbaceous FMC over 
southern rough fuels could translate to an error of about 0.06 
km2 and 0.15 km2 respectively in predicting the burn area over 
a period of 24 hours. For woody fuels the mean and maximum 
errors are about 9 and 25 implying that the corresponding 
errors in burn area estimations over southern rough can be 
about 0.14 km2 and 0.38 km2 respectively. For pocosin fuels, a 
mean error of 9 and a maximum error of 25 in estimating live 
woody FMC when the actual woody FMC is below 95% 
would propagate to an error of 1.07 km2 and 2.97 km2 in 
predicting the next 24 hour burn area. When the actual live 
woody FMC is above 95% in pocosin, the corresponding 
mean and maximum errors in burn area estimations are  much 
less at 0.01 km2 and 0.04km2 respectively. The USDA forest 
service designates a particular day as a “large fire day” on 
which a fire of final size over 10 acres (≈0.04 km2) (Andrews 
and Bradshaw, 1995) is discovered. The error estimates of 
burn areas even in the average case are well above this “large 
fire” consideration implying that errors in current estimation 
techniques may result in a fire management problem. As such 
current techniques needs to be further improved by including 
either more bands or more variables (eg surface type, LAI) 
into the estimation model. 

 

TABLE 8 
ERROR ESTIMATES 

Adel, Byromville, 
Dallas, Metter 

Athens, Camilla, 
Dawsonville, Sterling Estimation 

methods Mean 
absolute 

error 

Maximum 
absolute 

error 

Mean 
absolute 

error 

Maximum 
absolute 

error 
 Live Woody 
FMC using 
NDVI/LST 

5.16 11.62 8.6 21.66 

Live  Woody 
FMC using 
NDWI7 

5.42 12.81 8.38 24.55 

Live 
Herbaceous 
FMC  using 
NDVI/LST  

8.36 24.07 13.74 29.80 

Live 
Herbaceous 
FMC using 
NDWI7 

9.13 24.89 13.80 32.26 
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TABLE 9 
 SENSITIVITY ANALAYSIS 

High Pocosin  (Fuel Model O) Southern Rough (Fuel Model D) Fuel Moisture 
Content (%) 
p 

 
Range 

 
     R2 

Slope 
∆A(m2) / ∆p 

 
Range 

 
     R2 

Slope 
∆A(m2) / ∆p  

Live herbaceous 
FMC 

50-235 1.0 0 50-235 0.99 -4425.8 

50-95 0.99 -118983 Live Woody FMC 
95-185 0.97 -1436.2 

50-185 0.93 -15118 

 

V. CONCLUSION 
We have estimated the potential errors in remote sensing 
based live FMC estimations and analysed the implications of 
such errors in fire behavior predictions. The study also gives a 
basis for the accuracy requirements of present and future 
remote sensing techniques to estimate live FMC. The study 
was focused on the Georgia region of south-eastern USA and 
sensitivity of fire behavior to live FMC was investigated in the 
Okefenokee National Wildlife Refuge area under dry, no-
wind, no-slope conditions. The results show that as far as 
wildfire behavior estimation in Okefenokee is concerned 
remote sensing retrievals of live woody FMC should be more 
accurate in the lower FMC range below 95%. Under the 
simulated dry, no-wind and no-slope conditions errors in burn 
area predictions range from 0.06 to 0.15 km2 for the mean and 
maximum estimated errors of 14 and 35 in measuring live 
herbaceous FMC. Errors in burn area predictions could range 
from 0.01 to 2.97 km2 for the mean and maximum estimated 
errors of 9 and 25 in measuring live woody FMC. These error 
estimates are obviously best case estimates since the empirical 
regression models are used in the same season, same year and 
same region from which the models were constructed. Overall 
the study suggests that remote sensing techniques should be 
further improved. The results of this analysis apply to the 
Okefenokee region where pocosin and southern rough fuels 
are predominant. However they can serve as approximate 
results for other fuel models as well. Fire behavior prediction 
has typically utilized the 13 fuel models tabulated in 
Rothermel, 1972 and Albini, 1976. Anderson, 1982 developed 
a similarity chart that allows mapping of NFDRS fuel models 
to the fire behavior fuel model of Rothermel. Based on this 
similarity chart, we can say that the fire behavior in high 
pocosin is similar to fire behavior in mature bush (fuel model 
B), while fire behavior in southern rough resembles that in 
Alaska black spruce (fuel model Q), intermediate brush (fuel 
model F), sagebrush (fuel model T) and Tundra (fuel model 
S). Owing to this similarity the present analysis can be 
assumed to apply to fuel moisture retrievals in regions where 
the above mentioned fuel model types are present. 
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