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Detailed data on tree species drive models that predict risk of insect and disease mortality 
in forest stands and simulation models for future stand conditions. Application of such 
models in geospatial analyses requires these data for millions of remotely sensed pixels. 
However, the vast majority of remotely sensed thematic maps predict a few categories of 
stand conditions, such as forest type and stage of stand development. Even if the inherent 
inaccuracies in remotely sensed predictions are ignored, there is considerable variability 
in tree composition within each category. There is growing interest in k-Nearest Neighbor 
(k-NN) imputation as an alternative to supervised classification of remotely sensed data. 
k-NN starts with a set of  training sites j, 102<j<103, within the target geographic area. 
One attractive set of training sites is the field plots measured by the USDA Forest 
Service’s Forest Inventory and Analysis program. For each pixel i, 105<i<107, which are 
outside of the training set, k-NN finds 1≤k training sites that are “close” to the ith pixel 
within a feature space formed from remotely sensed and other geospatial data. Then 
detailed field measurements from those k training sites are used to impute, or predict, the 
same type of detailed field data for that ith pixel. This imputation is separately repeated 
for each and every pixel in the full target area. The outcome is detailed predictions of tree 
species, tree size composition and other field measurements for each pixel. The accuracy 
of k-NN predictions strongly depends upon the distance metric used to measure 
“closeness” in this feature space, and there are numerous alternatives for that measure. 
This paper presents and evaluates a new measure that transforms a high-dimensional 
remotely-sensed feature space into a new space that is optimized to fit a high-dimensional 
response space, namely tree-level composition at the pixel scale. The advantages of this 
approach include highly efficient prediction algorithms for risks to forest health and 
forecasts of future conditions at the pixel scale. 

 

Efficient forest management requires accurate maps of risks to forest health. Some risk 
models use detailed data on the distributions of tree species and tree sizes in a stand, 
which are best directly measured in the field. In a more perfect world, these data would 
be available for every stand. Therein lays the problem. While the field measurements 
required for some risk models are feasible at a small number of sample sites, they are 
seldom feasible in all stands across a large geographic area. Therefore, the challenge is to 
extrapolate field measurements from a sample to full wall-to-wall map coverage. 
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This is not a new challenge. Forest stand mapping with aerial photographs has been 
common for 50 years. An photo-interpreter classifies each stand into a single category for 
forest type (e.g., aspen-birch association), stocking (e.g., 70-100% crown closure), and 
stage of stand development (e.g., poletimber). In reality, each delineated stand has 
internal variability (e.g., interior, edge, inclusions, gaps, gradients), and a single category 
containing numerous stands has even greater variability. However, it is not reasonable to 
delineate and classify stands into smaller pieces or more detailed categories. This 
variability within each category makes accurate risk modeling problematical. 

Digital classification with remotely sensed data has greatly improved the efficiency of 
mapping stand conditions. However, today’s technology still follows the 1950’s 
paradigm: classification into a single category of broad forest conditions with 
considerable variability within each category. This paradigm remains frustrating to 
entomologists and pathologists who predict and map expected forest health risks based on 
more detailed stand conditions. 

Another shortcoming of modern remote sensing methods is in the type of training data 
used in digital classification algorithms. Remote sensing technologists favor 
homogeneous training areas, such as the interior of an undisturbed even-age stand. They 
avoid heterogeneous stands or stand edges, even though these messy conditions can 
dominate many landscapes across the eastern United States. 

An alternative to traditional classification of remotely sensed imagery is k-Nearest 
Neighbors (kNN) imputation. Simply stated, kNN predicts (imputes) the unknown 
conditions of an unmeasured pixel by averaging the known measurements of k pixels, 
where k often ranges from 1 to 20. kNN need not classify pixels into categories. Rather, 
kNN predicts a tree-list for every pixel in the image using a sample of training data that 
has a tree-list from a field cruise. 

The accuracy of kNN depends on which measured pixels are used to predict field data for 
each unmeasured pixel. That is where the “Nearest Neighbors” part comes in. The 
assumption is that pixels with similar remotely sensed data will have similar field 
measurements. kNN methods measure similarity between two pixels as the Euclidean 
distance in a multidimensional “feature space,” which is defined by multivariate remotely 
sensed data. For example, we used Spring and Fall Landsat imagery, each with six 
spectral bands; and elevation, slope and aspect. Every pixel i has a precise location in 
this15-dimensional feature space. To predict the field measurements for pixel i with 
unknown stand conditions, the kNN algorithm searches among the training sample of n 
pixels, for which field measurements are known. The algorithm finds the k pixels among 
the sample of n pixels that have the shortest distance to pixel i in this15-dimensional 
feature space of remotely sensed data. The algorithm then averages the field 
measurements from these k “nearest neighbors” and assigns those averages to pixel i. The 
algorithm is repeated for each pixel in the entire mapped area. 

The accuracy of the kNN method can be increased by transformations of the remotely 
sensed feature space so that pixels with similar stand conditions are closer together in the 
transformed space. This has often been accomplished by simple ad hoc methods. For 



example, each of the 15 layers of remotely sensed data could be normalized to have a 
mean of zero and a variance of one. The Mahalanobis transformation goes one step 
further by making each of the 15 layers statistically uncorrelated with each other. Each of 
the 15 remotely sensed layers can be scaled by a constant to reduce prediction residuals 
in a test dataset, either by systematic experimentation with different sets of fixed weights, 
or with a nonlinear optimization algorithm. Canonical correlation transforms the 
multivariate remotely sensed feature space to maximize the correlation with multivariate 
field measurements from a training sample. 

This paper explores a very simple alternative to the usual transformation strategies. The 
training sample is used to fit linear or nonlinear multivariate regression models that 
predict stand-level total basal area for each of 19 major tree species using multivariate 
remotely sensed measurements as predictor variables. Then the models are applied to all 
pixels in the study area. This produces a new 19-dimension feature space, each with the 
units of predicted basal area per hectare for one of the 19 major tree species. Finally, the 
kNN algorithm is applied in this new feature space. The assumption is the optimization 
function in regression will produce an “optimal” feature space in which the kNN 
algorithm can operate. To the best of our knowledge, this very simple idea has not 
previously appeared in the forestry literature. 

We used 717 field plots that cover the entire State of New Hampshire. We 
simultaneously compared 86 different variations of typical transformations plus the new 
transformations based on regression models. We discuss results for the 24 "best" models 
among these 86. This is a single case study, so we do not make generalizations about 
performance of any of these methods in other study areas. 

We randomly selected 500 plots as training data, and the remaining 217 plots were used 
to access accuracy. Both of these partitions provide sample estimates for the entire 
population. 

The models considered are based on permutations of the following options: 

(1) The k in kNN is 1, 5, or 15 nearest neighbors. 

(2) A single donor plot is randomly selected within a cell of 5 or 15 of the nearest 
neighbor plots. This is based on a imputation method by Brick et al. (2004), but it has not 
appeared in the forestry literature on kNN methods. 

(3) Basal area measurements or predictions are modified with the Hellinger 
transformation, which converts abundance by tree species to the fractional species 
composition of a site. This approach is recommended Legendre and Legendre (2003) for 
analyses of plant communities 

(4) In addition to the 19-dimension basal area regression feature space, a 20th dimension 
is added for predicted total pixel-level basal area. Since the unit of measure for all 20 
dimensions is basal area per hectare, this option puts approximately 50% of the 
importance on total stand basal area, and the remainder on basal area per hectare for each 
of the 19 major tree species.  



(5) Feature space defined by the Mahalanobis transformation. 

(6) Each dimension of the feature space is transformed into rank order statistics. The 
number of ranks equals the number of plots in the training data set (500 in our case). This 
is a self-scaling, nonparametric approach in that the original range of data values do not 
effect the ranks. 

(7) Canonical correlation transformation. 

(8) Multivariate multiple regression transformation 

(9) Nonlinear binary tree regression, separately applied to each of the 19 manor tree 
species. 

(10) A binary-tree nonlinear classifier was used with the 15 remotely sensed layers to 
group pixels into major forest types. For each pixel without field measurements, k 
training plots where randomly selected within the same remotely sensed category. If k is 
very large, this is similar to assigning a stratum mean to each pixel in that remotely 
sensed stratum. 

(11) Each dimension of a transformed feature space is weighted by an index of its 
predictive strength. In canonical correlation, it is the eigenvalue for that canonical variate. 
In a feature space predicted from regression models, it is the correlation between 
measured and predicted BA by tree species from the training sample 

(12) A 19-dimension kNN feature space is formed based on field measurements of basal 
area by the 19 major tree species in the sample of 217 test plots. This feature space can 
not be applied to the entire map, but it is useful to compare some of the above options in 
a “best-case” setting. 

Accuracy is evaluated with the random sub-sample of 217 field plots. Accuracies are 
evaluated at both the pixel- and population-levels. However, this evaluation is complex 
because stand basal areas are predicted for 19 different species, and assessments at both 
the pixel- and population-levels are relevant in forestry applications. 

Pixel level prediction accuracy is the squared difference between the predicted and true 
BA summed over all 19 major tree species. The residuals represent both the variability of 
predictions and their overall squared bias. There are 19 different residuals for each pixel 
in the test dataset, one for each major tree species. A 19x19 covariance matrix is 
computed for residuals in the test data. We measure the overall magnitude of these 
multivariate prediction residuals with the Wilk's generalized variance, which is a scalar 
value that quantifies the "volume" of a covariance matrix based on its matrix determinate.  

Population level accuracy is measured by the Euclidean distance between each of 217 
quantiles from the true and predicted BA's for each of the 19 tree species. This gauges the 
distribution of basal area per hectare by tree species within the entire population.  



In the “best case” setting in option (12), pixel-level prediction errors are lowest for k=5, 
and errors are somewhat larger for k=1 and k=15. However, the agreement in basal area 
distribution by tree species at that population level is greatest with k=1; disagreement is 
about 50% worse with k=5, and about 100% worse with k=15. Therefore, selection of the 
k value in kNN can force a compromise between accuracy in predicting conditions at the 
pixel level v. the population level. 

The most accurate options with remotely sensed data at the pixel-level included the rank 
transformation (12) with k=5 and k=15; multivariate multiple regression (8) and the 
Mahalanobis (5) transformations with k=5 and k=15; multivariate multiple regression (8) 
with k=1 and a neighborhood cell (2) having 5 nearest neighbors; the nonlinear binary 
tree regression models (9) and multivariate multiple regression (8) without kNN 
imputation; and canonical correlation (7) with k=15. All these options had very similar 
accuracies at the pixel level. Other options were noticeably less accurate. 

These same options performed relatively well for species-specific basal area distributions 
at the population level. However, multivariate multiple regression (8) with k=1 in  a 
neighborhood cell having 5 nearest neighbors (2) was notably more accurate. Given these 
particular accuracy metrics, this latter option performed best in this very limited case 
study. 

Classification of pixels into major forest type categories (12) was not as accurate as these 
other options. This suggests that kNN can produce better results than assigning the 
stratum means of field measurements to all pixels in that remotely sensed stratum. Also, 
the Hellinger (3) transformation and weighting dimensions of the feature space by 
goodness-of-fit statistics (11) did not improve accuracies noticeably. 

kNN methods can offer a several advantages compared to regression models alone. kNN 
better preserves the pixel-level covariance structure and population-level distributions 
among tree species, tree sizes and stocking, especially when k=1. Also, a risk model can 
be run once for each of the n field plots in the training sample. Since kNN associates each 
pixel with k field plots among those n plots, the model predictions from those plots form 
the prediction for the pixel. It is not necessary to run the risk model separately for each 
pixel in the entire mapped area, as would be the case with regression models alone. 

In conclusion, regression transformations for kNN imputation in this one case study 
produced incremental improvements over more familiar kNN methods, such as the 
Mahalanobis and canonical correlation transformations. The improvement was most 
notable for population-level distributions rather than pixel-level accuracy. 

 


