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AN UNSUPERVISED STATISTICAL SEGMENTATION ALGORITHM FOR
FIRE AND SMOKE REGIONS EXTRACTION

Ying Li, Yushan Zhu, Anthony Vodacek

Abstract— Estimation of the extent and spread of wild-
land fires is an important application of high spatial
resolution multispectral images. This work addresses an
unsupervised statistical segmentation algorithm to map
fire extent, fire front location, just burned area and smoke
region based on a statistical model. The results are useful
information for a fire propagation model to predict fire
behavior.

The finite mixture (FM) model is a widely used model for
image segmentation because of it is mathematically simple
and tractable. However, it ignores the spatial constraint of
images, and works only on well defined images with low
level noise. This is an intrinsic limitation of histogram-
based segmentation algorithm, such as K-means and EM
algorithm. In this paper we propose model the hidden
segmentation field as an Markov random field (MRF). The
hidden segmentation field can not be observed directly but
can be estimated through the observed vector-valued pixels
of satellite/airborne multispectral images. The advantage
of the MRF model is that it encodes spatial information
by considering the mutual influence of neighboring sites.
Based on the MRF property of the segmentation field, we
propose model the posteriori marginal probability field
on the image sites as a multivariate Gaussian Markov
random field (MGMRF). And then implement a Maximize
Marginal Probability method (MPM) to segment the im-
ages. Our algorithm is a generalization of the Expectation
Maximization (EM) algorithm to incorporate spatial con-
straints in the image. The use of statistical method has the
added advantage of providing a direct means of deriving
a probability value that is required for new approaches to
fire propagation modeling. Experimental results obtained
by applying this technique to two AVIRIS real images show
that the proposed methodology is robust with regard to
noise and variation in fire as well as background. The
segmentation results of our algorithm are compared with
the results of K-means algorithm and EM algorithm. It is
shown that the results of our algorithm are consistently
better than those of classical histogram based methods.

I. INTRODUCTION

The affects of wildland fire are very important at local
scales where impacts to human safety and property
become critical. The continued development of models
for forecasting wildland fire behavior and propagation
can benefit from the use of high resolution wildland fire
images from an airborne platform as a data source for
initiating and nudging model predictions [7], [17]. Both
airborne [1], [13], [16], [22] and satellite [14], [15], [21]
remote sensing systems that have the appropriate bands
have been used to study wildland fire in the past several
decades. Although visual analysis has remained impor-
tant for operational use [13], automated algorithms need
to be developed for real time airborne applications such

as fire propagation modeling. In this paper, we present a
technique for unsupervised segmenting a multispectral
image to map fire front, just burned area and smoke
region.

The problem of multispectral image segmentation is
that of estimating the “hidden” or “unobserved” re-
alization of the label field X from the “observed”
multispectral image y, which is a determined realization
of observed field Y . The value of a given site in the
label field indicates the class to which the corresponding
pixel in the observed image belongs. Some cluster-
ing procedures such as K-means algorithm [11] and
Expectation Maximization (EM) algorithm [9] neglect
pixel-level spatial correction, by assuming the vector-
valued image pixels are statistically independent and
identically distributed. To incorporate both the spatial
and spectral information, we use a 2-D Markov Random
Field to model the hidden label field. The Markov
Random Field (MRF) has been used widely in image
segmentation during the recent past [2], [8], [12], due
to its power to represent many image sources, and
the local nature of the resulting estimation. There are
two Bayesian methods to estimate the global optimum
estimation of the label field X based on the MRF model:
the MAP method and MPM method corresponding to
different cost functions. The MAP method estimates
the unobservable realization of label field X by x to
maximize the a posteriori probability conditioned on
Y = y. The MAP estimate minimizes the probability
that any pixel in the image will be misclassified. The
MPM method chooses the estimated realization of label
field x such that for each pixel s, xs maximize the
a posteriori marginal probability, it minimizes the
probability of classification error on each pixel site.
It has been shown that the MPM estimation criterion
is more appropriate for image segmentation than the
MAP criterion [18]. This is because the MAP estimate
assigns the same cost to every incorrect segmentation.
MAP considers the segmentation as a whole, while
regardless the incorrect classification at each individual
pixel site, whereas the MPM estimation assigns a cost
to an incorrect segmentation based on the number of
incorrectly classified pixels and try to minimize it in
the segmentation result.

Solutions of MAP can be approached by the simulated
annealing (SA) [12], and MPM can be solved by using
Gibbs sampler [19]. This type of classifiers have rarely
been applied to multispectral data, primarily because
they tend to be extremely computation expensive. How-
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ever, the computation time can be greatly reduced by
archiving local maximum through Besag’s iterated con-
ditional modes(ICM) [3]. It is reported that the typical
ratios of compute time for ICM, Gibbs sampler and SA
are 1:37:6000 [10]. We develop an algorithm opt for an
analogue ICM to find an MPM estimation rather than
using Gibbs sampler method. The segmentation field
x and the parameters for each class are estimated and
updated simultaneously. In order to use the ICM method
to find MPM estimation of the “hidden” label field X ,
we model the posteriori marginal probability field as a
multivariate Gaussian Markov field.

Our approach separates the pixels in the multispectral
image into regions based on both their spectral and
spatial information using MRF model. Since we are
trying to extract fire regions including fire front, just
burned area and smoke, which have relatively smooth
surface and no texture, we assume we work on images
of objects with smooth surface. In addition, we can
consider the textured terrain types to be noise, which
is characterized by the covariance matrix. Thus the
image can be modeled as a mixture of Gaussian with
spatial constraints. The technique proposed here can be
regarded as a generalization of the EM algorithm with
modifications to include the spatial constraints. The spa-
tial constraint is introduced by modeling the label field
as a Markov Random Field. The experimental results
on real AVIRIS images indicates that the performance
of our algorithm is clearly superior to the K-means
clustering algorithm and the EM algorithm for retrieval
of the fire front, just burned area and smoke region in
multispectral images.

The organization of the paper is as follows. In the
Section II, we briefly recall the Markov Random Field
model for the label field of images we opt. The algo-
rithm is described in detail in Section III. The feature set
selected for the implication is described in Section IV.
The Section V shows some results of the unsupervised
segmentation algorithm on two real images. The paper’s
conclusions are summarized in Section VI.

II. STATISTICAL MODEL

In this paper, we use upper case letters for random
quantities/field and lower case letters for their determin-
istic realizations. We assume that the “observed” image
Y is a random field defined on a rectangular grid, S,
of N points, and the vector-value spectral of a pixel at
location s ∈ S is denoted by Ys. Ys takes values in
Rd, where d is the band number of the multispectral
image. X = (Xs)s∈S denote the “hidden” label field,
which contains the classification of each pixel in Y .
Sites in X will take values in the set {1, ..., M}, where
M is the number of classes. Given xs = l, ys follows
a conditional probability distribution and is conditional

independent.

p(ys|l) = f(ys; θ(l)) (1)

where, θ(l) is the set of parameters of class l. For
all classes, the conditional probability density function
family f(·; θl) has the same known analytic form.
The conditional probability density of Y given X can
be assumed to exist and strictly positive. Using this
framework, the image may be segmented by estimating
the label field X given the observed image Y .

A. Finite Mixture of Gaussian Model

In the finite mixture of Gaussian model (MoG), for
a given class l ∈ {1, ..., M} and s ∈ S, the random
variables y are independent samples from a multivariate
Gaussian distribution, with the probability

f(ys; θ(l))

= 1
(2π)d/2|Σl|1/2 exp

[− 1
2 (ys − µl)TΣ−1

l (ys − µl)
]
(2)

where µl and Σl are the mean and the covariance
of class l, respectively. For every class l, p(Xs =
l) = αl is mutually independent and called a mixing
parameter. We denote the model parameter set by Θ,
Θ = {αl, µl, Σl}. Then the joint probability of x and y
can be calculated given the model parameters

p(x, y|Θ) =
∏

s∈S

p(ys, xs|Θ)

=
∏

s∈S

{αxs · f(ys; θxs)}
(3)

Although this MoG model has been used widely, it
is not considered to be a complete model in practice
because it neglects the spatial information by assuming
the vector-valued image pixels to be statistically inde-
pendent and identically distributed. In order to model
the spatial correlation of vector-valued image pixels, we
adopt the Gauss Markov random field (GMRF) model in
this paper. And the spectral information is incorporated
by adopting the Multivariate Gaussian model for an
image pixel ys, given a specified classification xs, while
the spatial correlation is encoded by modeling the label
field X as an MRF.

B. Markov Random Field Model

The aim of the segmentation algorithm is to classify
the multispectral images from two imperfect (spectral
and spatial) sources of information. The first is that
associated with each pixel s, the vector-valued Ys obey a
known statistical distribution given its class(label). It is
assumed that given any particular configuration x ∈ X ,
each vector-valued pixel follow a multivariate Gaussian
distribution ys|xs, θxs ∼ N(µxs ,Σxs), where θxs are
the involved parameters. In this paper, N(µ, Σ) denotes
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univariate/multivariate Gaussian distribution, with mean
µ and variance/covariance Σ. The second states that
adjacent pixels tend to from the same class (i.e. have
the same label). It is desirable to construct a random
field model to quantify the second source probabilisti-
cally. MRF theory provides a convenient and consistent
way to model context-dependent entities such as image
pixels and correlated features. This is achieved by
characterizing mutual influences among such entities
using conditional MRF distributions.

In an MRF, the sites in S are related to one another
via a neighborhood system. The conditional distribution
of a site in the field given all other sites in the field is
identical to the conditional distribution of the site given
only those sites in a finite symmetric neighborhood
surrounding the site. The neighborhood of a pixel site
s ∈ S is a set of sites Ns ⊂ S with the two properties
that ∀s, r ∈ S, s ∈ Nr ⇔ r ∈ Ns, and s is not in Ns.
In this application, we use an 8-point neighborhood.

p(xs|xq, all q 6= s) = p(xs|xq, q ∈ Ns) (4)

In this application, we model the label field X =
Xs, s ∈ S as an underlying MRF field. The label field
X assumes values in a finite state space {1, 2, ...,M},
which is unobservable. According to the locally depen-
dent property of MRF field, we assume

p(xs|y) ∼= p(xs|yλs) (5)

where λs contains pixel s and its neighbors. For in-
stance, in this paper we use a eight-pixel neighborhood,
then λs is a 3 × 3 block centered on pixel site s. In
addition, we propose using a Gaussian Markov Ran-
dom Field (GMRF) to model the posteriori marginal
probability field given y, which is denoted by Π =
(p(xs|yλs,Θ))s∈S . Π contains the posterior marginal
probability p(xs|yλs, Θ) for each pixel s in Y . It should
be noticed that the random field Π is a multivariate
GMRF (MGMRF). The posteriori marginal probabilities
{p(xs = l|yλs, Θ)}l∈{0,1,...,M} at each pixel site s
can be treated as a vector-valued feature on the two-
dimensional lattice S. Since the label field X in this
application has unordered labels, the conditional odds of
xs, in favor of class l, depend only on the same-labeled
neighbors [6]. The MGMRF field can be simplified into
M independent Gauss Markov Random Fields Πl. The
value of Πl at location s ∈ S is the marginal probability
of xs = l given yλs. Thus, Πl,s takes continuous values
in [0, 1]. The MRF property of the GMRF model states
that the posteriori marginal probability πl,s = p(xs =
l|yλs, Θ) is only depend on its neighbors πl,r = p(xr =
l|yNr, Θ), r ∈ Ns. And Πl,s has conditional densities
[4], [5]

p(πl,s|πl,Ns) ∝ exp{− 1
2λs

(πl,s −
∑

r 6=s

βsrπl,r)2}, (6)

where βsr = 0 unless s and r are neighbors, and
βsrλr = βrsλs. λ and β are unknown parameters.

III. SEGMENTATION ALGORITHM

In this section, we describe the unsupervised statistical
segmentation algorithm for estimating the distribution of
regions x. The image may be segmented by estimating
the pixel classifications X , given the observed image Y
and distribution parameters Θ. In particular, we adopt
the maximization the posteriori marginal probability
(MPM) estimation.

We described the MPM algorithm in the follow as-
suming that Θ is known. The criterion used for MPM
is to minimize the expected value of the number of
misclassified nodes in the rectangle lattice. The seg-
mentation problem is formulated as an optimization
problem, which can be viewed as the minimization
of the conditional expected value of a cost function
R(x∗, x) given the observed image Y and parameters
Θ, over all possible realization of the label field X .
The cost function is given by

R(x∗, x) =
N∑

s=1

t(x∗s, xs) (7)

where, t(xr, xs) equal 0 when xs 6= xr, and 1 when
xs = xr. x∗ is the true value of X . The cost function
R(x∗, x) is the number of pixel sites where the esti-
mated x are different from the true value x∗, i.e. the
number of misclassified pixel sites in S.

E[(R(x∗, x)|Y = y] = E[
N∑

s=1

t(x∗s, ss)|Y = y]

=
N∑

s=1

E[t(x∗s, xs)|y = y]

=
N∑

s=1

p(x∗s 6= xs|Y = y)

=
N∑

s=1

(1− p(x∗s = xs|Y = y))

(8)
To find the MPM estimate of x∗, it is necessary to find
for each s ∈ S the value of l which maximizes the
posteriori marginal probability of xs at s given y

p(xs = l|y) =
∑

X:xs=l

pX|Y (x|y, θ) (9)

where, l ∈ 1, 2, ...,M . Note that p(xs|y) depends on
all pixels to calculate almost all p(x) and is computa-
tionally infeasible. A feasible local method estimate the
realization of each xs by maximize p(xs|yλs). Even for
local method, the computation demand is still enormous.
For instance, if there are six classes and we want to use
a neighborhood containing eight pixels, we have already
a mixture of 69 distributions.
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In this paper, we adopt iterated conditional modes

(ICM) method to estimate π̂l,s = p̂(xs = l|yλs, Θ),
and then assign x̂s with l, l = maxl(p̂(xs = l)|yλs, Θ).
We use π̂l denotes a provisional estimation of the true
π∗l , ICM merely replaces sites in πl with a value which
maximizes the conditional density function, as shown
in Equation 10, at each site s.

p(πl,s|πl,r, r ∈ Ns) (10)

And then choose the label which has maximum con-
ditional probability given the neighbors πl,Ns. The
random field Πl has continuous intensities. It follows
from Equation 6 that

πl,s|πl,Ns ∼ N(
∑

r

γsrπl,r, λs). (11)

Then the estimate π̂l of the true value π∗l is chosen
to maximize the expectation of Πl. Specifically, the
updating formula at pixel s is a linear combination
of πl,s and the current estimate at neighboring pixel
sites [6]:

π̂l,s = (αlπl,s +
∑

r∈Ns

γsrπ̂l,r) (12)

α and γrs are parameters of the Gaussian Markov ran-
dom field.The bigger the value of the parameter αl, the
more likely the pixel site xs is belong to class l. Raising
the value of γ has the effect of increasing regions’ size
and smoothing their boundaries. In addition, the value
of different γrs determine the shape of the regions.
Estimation of these parameters is difficult and compu-
tationally expensive. Besag [6] states that estimation of
these parameter is unnecessary in applications. We use
fixed values of α and γ in this application. Besides the
parameters, the size of neighborhood also has influence
on the shape and size of the segmented regions. The big-
ger the neighborhood is chosen, the larger and smoother
the regions will be. In this application, we are trying to
segment the satellite or airborne images into regions
of fire front, just burned area, smoke, and background.
These regions usually expand over a considerable large
group of pixels, so there should not have small isolated
regions in the segmented images. Especially for the
background class, it may consists of different terrain
types, i.e. road, river, forest, soil, and so on. In order
to classify all these into the same class, i.e. background
class, strong spatial constrain is needed to deal with
this problem. We choose an eight-pixel neighborhood
system. Experiments show that the value of γ does not
obviously affect the segmentation results, we choose a
value of 1.5 in this application. The value is seems
to work well on discrete MRF field cases in former
works [6] [20].

The algorithm for ICM may be stated explicitly as
follows:
1. Calculate the posteriori marginal probability as an

initial segmentation using the Equation 13. One should
notice that Equation 13 is based on the assumption
that ys and xs are both independent random variables.
This initial segmentation does not consider any spatial
information at all.

p(xs = l|ys) =
alp(ys|l, θl)∑M

k=1 akp(ys|k, θk)
(13)

Here, all the parameters are assumed to be known.
2. Perform a weighted majority-vote solution acting on
the initialization defined by Equation 12 at each pixel
site s ∈ S.
3. Assign the pixel at site s to the class l, that is xs = l.
l = max{π̂l,s}l∈{1,...,M}.
4. If no changes occur in x or reach a pre-defined
iteration number then stop, otherwise repeat step 2.

In order to perform the ICM algorithm mentioned
above, we must estimate the parameters Θ. We will use
a modified version of the EM algorithm to estimate Θ,
and segment the image (estimate the x) simultaneously.
Like the EM algorithm, our algorithm is iterative. It
alternates between estimating x and the parameters of
all mixed Gaussian distribution Θ: given an initial label
field xi, and parameters Θi, update the parameters Θi+1

and estimate the new label field xi+1.
The EM algorithm has been widely used for the

estimation of mixture-density parameters. EM algorithm
solves this kind of problem by assuming the existence of
a set of unobserved or hidden data. In our formulation,
the observed image y is the incomplete data set, and the
label field x is the unobserved or hidden data. The EM
algorithm maximize the expected value of the complete-
data log-likelihood log pY,X(y, x|Θ) with respect to the
label field x given the observed image y and the current
parameter estimates Θi−1 to achieve new parameters Θ.

Q(Θ,Θi−1) = E[log pY,X(y, x|Θ)|y, Θi−1]

= E[log pY |X(y|x, Θ)pX(x|Θ)|y, Θi−1]
(14)

Where Θi−1 are the current parameters, and Θ are
the new parameters that we optimize to increase Q.
As mentioned before, the vector-valued image pixels
are conditional independent given a particular x. Then
deriving from Equation 14 gives:

Q(Θ,Θi−1) =
M∑

l=1

∑

s∈S

log(px(l)p(ys|xs = l, Θi−1))p(xs = l|y, Θi−1)

(15)
It should be noticed that Q function is calculated given
xi−1, so the probability of an element in xi−1 has
the value of l, px(l), is a priori knowledge of the
relative likelihood of class l. We assume that we have
M component densities mixed together with M mixing
coefficients al, such that

∑M
l=1 al = 1. Then we can
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write Equation 15 as:

Q(Θ, Θi−1) =
M∑

l=1

∑

s∈S

log(al)p(xs = l|y, Θi−1)

+
M∑

l=1

∑

s∈S

log(p(ys|xs = l, Θi−1))p(xs = l|y, Θi−1)

(16)
By differentiating Equation 16 and set to zero, new
values of Θ can be obtained. The estimation of the new
parameters in terms of the old parameters are as follows:

anew
l =

1
N

∑

s∈S

p(xs = l|y, Θi−1) (17)

µnew
l =

∑

s∈S

ysp(xs = l|y, Θi−1)

∑

s∈S

p(xs = l|y, Θi−1)
(18)

Σnew
l =

∑

s∈S

p(xs = l|y, Θi−1)(ys − µnew
l )(ys − µnew

l )T

∑

s∈S

p(xs = l|y, Θi−1)
.

(19)
Here, p(xs = l|y, Θi−1) is calculated using the ICM
method described above.

The estimation of the parameters Θ and the seg-
mentation of the image (which uses Θ as a prior
knowledge) must be carried out simultaneously. So the
whole segmentation algorithm can be described as the
following iterative procedure:
1. First obtain an initial estimate x̂ of the true segmenta-
tion x∗, and calculate the Maximize Likelihood Estima-
tion (MLE) of the parameters Θ. The MLE estimation
of the parameters Θ ignore the spatial constraints of
field X .
2. Carry out single circle of ICM based on the current
Θi−1 to estimate new pi(xs = l|y, Θi−1) and then
obtain a new xi.
3. Estimate Θi using Equations 17 to 19, based on xi.
4. Return to 2, until the the number of pixels in x that
change during an iteration cycle is less than a threshold,
or the iteration number is more than a prescribe number.

IV. FEATURE SELECTION

Feature selection is very important for classification
implementations. It not only can reduce the cost of
classification by reducing the number of features, but
also can provide a better classification accuracy.

The test images we used are AVIRIS images. The
AVIRIS measures reflected radiance of 20 × 20 meter
pixels in 224 narrow spectral bands. The resulting image
“cube” consisted of 614 samples by 512 lines by 224
spectral bands. The spectral resolution of AVIRIS is
10 nm, and the range of spectral coverage is 380 to

2500 nm (0.38 - 2.5 m). Different feature set should be
selected according to different classification purpose. In
this application, our goal is to segment the satellite or
airborne image into regions of fire front, just burned
area, smoke, and the background. It is known that
1.8µm channel is very sensitive to flame energy and not
very sensitive to smoldering energy, while the 2.5µm
channel is very sensitive to flame energy and also
somewhat sensitive to smoldering energy. Smoke is
salient in visible bands and almost transparent in near-
IR (NIR) and SWIR bands. By inspecting the AVIRIS
image, we choose three features empirically: 1. (band
217-band12); 2. band 217 (about 2.5µm); 3. band 143
(about 1.8µm).

V. RESULTS

In this section we show the detailed results of our
algorithm working on two AVIRIS images. Figure 1 (a)
is an image of Cuiaba, Brazil with a prescribed fire,
which was take on August 25, 1995. The big fire in
the middle emitted heavy smoke coved a large area.
To the left of the big fire is a smaller fire with very
thin smoke. The result of our algorithm is shown in
Figure 1 (b), while the result of K-means and the result
of EM algorithm are displayed in Figure 1 (c) and (d),
respectively. Four classes are assigned to all of the three
algorithms, since the purpose of this application is to
map fire front, just burn area, smoke and background.

Although, k-means and EM algorithm both can sep-
arate the fire region from the background area, their
performances are very different. By examining the fire
region shown in Figure 2, we can see that EM algorithm
can segment the whole hot region from the background,
but it can not give out detailed information about the fire
front and the just burned area (which may be still smol-
dering). The EM algorithm combined the two regions
into one class. On the contrary, k-means can separate
the fire front clearly, but it can not separate just burn
area from the background area. Besides that, there are a
lot of pepper and salt regions in the segmentation result,
which is undesired. In this case, our algorithm achieve a
good and clean result. The fire front is indicated by blue
color as shown in Figure 1 (b). By carefully inspection
of the color bands, NIR band and SWIR band of the
AVIRIS image, we find that the segmented fire front
aligned well with the true fire front. The just burned
and still hot area is denoted with red color. Since the
just burned area in this case was still very hot when the
image was taken, EM algorithm fails to separate the
burn scar and the fire front. The smoke and background
region are indicated using white and black, respectively.
The segmentation result of our algorithm agrees well
with the eye inspection of the visible, NIR and SWIR
bands of the AVIRIS image.
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Figure 3 (a) is an image of San Bernardino Mtn, in

California, USA. The image was taken on September
01, 1999. A big fire was burning on left corner of
the image, producing heavy smoke. The results of the
three algorithms are shown in Figure 3 (b), (c), and
(d), respectively. We observed that in this case, our
algorithm also produce the best result. K-means and
the EM algorithm have better results than the last
image, since the background of this image is relatively
homogeneous. The segmentation result of our algorithm
is shown in Figure 3 (b). The smoke is indicated by
green color. White regions behalf the just burned area.
We can see small white regions on the left side of the
fire front, which is shown using red color. This result
agrees well with our priori knowledge of the fire in
this image: the fire was going against the wind, and
progressing slowly. It is noticed that both the K-means
and the EM algorithm map the fire region and smoke
region very similar to the result of our algorithm. But
both of them failed to report the just burn area, which is
very important information for a fire propagation model.

The results from the two AVIRIS images show that our
algorithm can stand high level of noise by considerate
spectral spatial information together. Even when the
histogram of different regions overlap significantly, our
algorithm can still achieve good segmentation result by
incorporating spatial information.

VI. CONCLUSION

In this paper, we propose a clustering algorithm to
map burn scar, fire extent, fire front location and smoke
region based on a statistical model. Our algorithm
is superior than histogram-based algorithms, since it
utilizes not only the spectral information but also spatial
information by incorporating an MRF model of the label
field. Our algorithm can be viewed as a generalized
EM algorithm by adding a stochastic component. This
spectral-spatial based algorithm has several improve-
ments, with respect to the EM algorithm. 1. It can
cope images with high level noise by incorporating
spatial information. 2. It can get rid of isolated small
regions. 3. The solution is essentially independent of
the initialization.

We applied our algorithm on two true AVIRIS images,
the segmentation results show clean and neat regions of
fire front, smoke, burn scar and background. The results
are useful information for a fire propagation model for
initiating and nudging model predictions.

VII. ACKNOWLEDGEMENT

This material is based upon work supported by the
National Science Foundation under Grant No. ACI-
0324989 and by the National Aeronautics and Space
Administration under Grant No. NAG5-10051.

REFERENCES

[1] AMBROSIA, V. G., WEGENER, S. S., SULLIVAN, C. V.,
BUECHEL, S. W., DUNAGAN, S. E., BRASS, J. A., AND
STONEBURNER, J. Demonstrating UAV-Acquired Real-Time
Thermal Data over Fires. Demonstrating UAV-Acquired Real-
Time Thermal Data over Fires 69 (2003), 391–402.

[2] BESAG, J. Spatial interaction and statistical analysis of lattice
systems. J. Roy. Stat. Soc. 36 (1974), 192–236.

[3] BESAG, J. E. On the statistical analysis of dirty pictures. J. R.
Stat. Soc. 48, 259–302.

[4] BESAG, J. E. Spatial interaction and the statistical analysis of
lattice systems. Journal of Royal Statistic Society B. 36 (1974),
192–236.

[5] BESAG, J. E. Statistical analysis of non-lattice data. The
statistician 24 (1975), 179–195.

[6] BESAG, J. E. On the statistical analysis of dirty pictures. Journal
of Royal Statistic Society B. 48 (1986), 259–279.

[7] CLARK, T. L., COEN, J. L., AND LATHAM, D. Description of
a Coupled Atmosphere-Fire Model . Intl. J. Wildland Fire 13
(1992), 2783–2799.

[8] CROSS, J. R., AND JAIN, A. K. Markov random field texture
models. IEEE Trans. Pattern Anal. Machine Intell. 5(3) (1983),
25–39.

[9] DEMPSTER, A. P., LAIRD, N. M., AND RUBIN, D. B.
Maximum-likehood from incomplete data via the EM algorithm.
J. Royal Statist. Soc. 39.

[10] DUBES, R., AND JAIN, A. Random field models for image
analysis. J. Appl. Stat. 16, 131.

[11] GARY, R. M., AND LINDE, Y. Vector quantizers and predictive
quantizers for gauss-markov sources. IEEE Trans. Commun.
COM-30, 2 (1982), 380–389.

[12] GEMAN, S., AND GEMAN, D. Stochastic relaxation, gibbs
distribution, and the bayesian restoration of images. IEEE Trans.
Pattern Anal. Machine Intell 6(6) (1984), 721–741.

[13] GREENFIELD, P. H., SMITH, W., AND CHAMBERLAIN, D. C.
Phoenix-the new forest service airborne infrared fire detection
and mapping system. In 2nd Int. Wildland Fire Ecology and
Fire Management Congress and the 5th Symposium on Fire and
Forest Meteorology (Orlando, Florida, 2003).

[14] KAUFMAN, Y. J., JUSTICE, C. O., FLYNN, L. P., KENDALL,
J. D., PRINS, E. M., GIGLIO, L., WARD, D. E., MENZEL,
W. P., AND SETZER, A. W. Potential Global Fire Monitoring
From EOS-MODIS. Journal of Geophyical Research 103
(1998), 32,215–32,238.

[15] KENNEDY, P. J., BELWARD, A. S., AND GREGOIRE, J. M. An
improved approach to fire monitoring in West Africa using
AVHRR data. International Journal of Remote Sensing 15
(1994), 2235–2255.

[16] KREMENS, R. L., FAULRING, J., MCKEOWN, D., RICHARSON,
M., COCKBURN, J., SEMERARO, G., AND RHODY, H. Wildfire
Airborne Sensor Project (WASP). Submitted to: Photogram.
Eng. Remote Sensing.

[17] MANDEL, J., CHEN, M., COEN, J. L., DOUGLAS, C. C.,
FRANCA, L., JOHNS, C., KREMENS, R., PUHALSKII, A., VO-
DACEK, A., AND ZHAO, W. Dynamic data driven wildfire
modeling. In Dynamic Data Driven Applications Systems (In
press, Kluwer, Amsterdam), F. Darema, Ed.

[18] MARROQUIN, J., MITTER, S., AND POGGIO, T. Probabilistic
solution of ill-posed problems in computational vision. Journal
of the American Statistical Association 82 (1987), 76–89.

[19] MARROQUIN, J., MITTER, S., AND POGGIO, T. Probability
solution of illposed problems in computational vision. IEEE
Trans. on Image Processing 3 (1994), 162–177.

[20] PAPPAS, T. J. An adaptive clustering algorithm for image
segmentation. IEEE Trans. Signal Processing 40 (1992), 901–
914.

[21] PRINS, E. M., AND MENZEL, W. P. Geostationary satellite
detection of biomass burning in south america. Int. J. Remote
Sensing 13 (2004), 49 – 63.

[22] RADKE, L. R., CLARK, T. L., COEN, J. L., WALTHER, C.,
LOCKWOOD, R. N., RIGGIN, P. J., BRASS, J., AND HIGGANS,
R. The WildFire Experiment (WiFE): Observations with air-



7

(a) (b)

(c) (d)
Fig. 1. Comparison of segmentation results of our algorithm and two histogram-based algorithms: K-means algorithm and EM algorithm, M=4.
(a) Original AVIRIS image of Brazil on a prescribed fire, (b)Segmentation result of our algorithm working on the image in (a), (c)Segmentation
result of K-means algorithm on the image in (a), (d)Segmentation result of EM algorithm on the image in (a).

(a) (b) (c) (d)
Fig. 2. Comparison of segmentation results of our algorithm and two histogram-based algorithms: K-means algorithm and EM algorithm,
M=4. (a) original image, (b) the result of our algorithm, (c) the result of K-means, (d) the result of EM algorithm.
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(a) (b)

(c) (d)
Fig. 3. Comparison of segmentation results of our algorithm and two histogram-based algorithms: K-means algorithm and EM algorithm,
M=4.(a)Original AVIRIS image of California, USA, (b)Segmentation result of our algorithm in (a), (c)Segmentation result of K-means algorithm
on the image in (a), (d)Segmentation result of EM algorithm on the image in (a).

borne remote sensors. Canadian J. Remote Sensing 26 (2000),
406–417.
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